Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating traffic congestion with advanced data analytics

17.08.2016

Fraunhofer IAO and Telefónica Deutschland are investigating how cell phone data could benefit traffic planning

Researchers at Fraunhofer IAO are carrying out a study to determine whether data from cell phone networks could offer a reliable source of information for traffic planning and an improvement over current data collection methods. Telefónica Deutschland is supporting the research project by providing anonymized cell phone data.


Data on the move – from smartphone to anonymization to traffic measurement

Stuttgart is facing major challenges in regard to mobility and traffic. The city is struggling with congestion, excessive noise and stress, and there is a clear need to improve air quality. This deteriorating situation has prompted the state capital of Baden-Württemberg –and a growing number of other cities – to seek out new ways of optimizing transport planning and mobility management.

Access to accurate transport data is one of the key prerequisites for taking concrete action. Collecting this data is a time-consuming business, however, and the results of these measurements frequently fail to reflect the huge variations in real-life situations.

Creating anonymized mobility profiles using cell phone data

This is where the intelligent analysis of cell phone data can make a big difference. This data is collected automatically during the normal course of business at Telefónica Deutschland – for example when a cell phone communicates with a cell tower to make a call or surf the Web – and it can be used to create anonymous mobility profiles.

Using cell phone data for transport planning and design would be an economical option that would offer round-the-clock availability and relatively easy access to broad samples. What’s more, the data could give cities the opportunity to tailor specific infrastructure projects more closely to people’s real needs by providing more accurate information on when and where people travel.

Fraunhofer IAO study to stretch over several months

As part of a three-and-a-half month research project, Fraunhofer IAO is conducting a study to investigate whether mobility data is suitable for measuring traffic flows in cities and whether it is superior to other methods of collecting data. The first step is for the researchers to analyze the status quo of traffic measurement methods based on case studies and interviews with experts.

The next step for the research team will be to shift their emphasis to Stuttgart by comparing the data from existing traffic surveys conducted in the region with the insights obtained from the city’s cell phone data. One of the key things the researchers will be focusing on is the real-life variation caused by factors such as heavy rain or major events being held in the region. The hope is that this study will reveal how much potential this data source offers in comparison to other data collection methods.

Telefónica Deutschland is the research partner who will be providing the required cell phone data. This data is anonymized in a three-step process certified by TÜV Saarland, which ensures that customers’ personal data is fully protected. This process makes it impossible to link the data to individual customers. Markus Haas, Chief Operating Officer of Telefónica Deutschland, hopes that the study will provide impetus for further projects in the field of advanced data analytics: “As a network operator, our core business yields huge quantities of data. We’re pleased that such a prestigious institute is investigating whether we could contribute toward improving transport planning by analyzing this data.”

Stuttgart – the perfect test city

Back in 2013, Stuttgart’s mayor Fritz Kuhn led an initiative which saw the state capital develop a new sustainable mobility action plan known as “Nachhaltig mobil in Stuttgart.” The plan included details of the key measures to be taken by the local authorities in nine fields of action. This is exactly the kind of scenario where the Fraunhofer IAO study can provide vital information in regard to issues such as upcoming roadworks and the availability of public transport.

Dr. Michael Münter, who heads up the strategic planning and sustainable mobility department at Stuttgart city council, explains why the study is important: “Many people understandably wish to have as much individual mobility as possible. We need to achieve an acceptable balance between people’s individual mobility needs, environmental concerns, and the interests of the city and the people who live here. Our action plan to promote sustainable mobility in Stuttgart aims to highlight innovative urban mobility projects that have a promising future. That’s why we’re looking forward to getting the results from Fraunhofer IAO on how we can use cell phone data for transport planning and design in Stuttgart.”

The potential of data analytics for traffic and the environment

Telefónica Deutschland hopes that the results of the study will provide it with further valuable insights for its work in the field of advanced data analytics. The telecommunications company is already running a pilot project in Nuremberg to investigate the extent to which air pollution can be calculated on the basis of cell phone data. The results of Fraunhofer IAO’s project will provide further insights into the potential benefits of data analytics for transport and the environment.

Prof. Anette Weisbecker, deputy director of Fraunhofer IAO, explains how the study will help: “It’s a complex business getting precise measurements of traffic flows in cities. Our study will reveal the extent to which transport planners could use mobile phone data to achieve more accurate, efficient and cost-effective results.”

The study forms part of the broad array of research conducted by the Fraunhofer IAO in the mobility arena. The Institute is carrying out numerous studies to determine how people choose to be mobile, both now and in the future. It uses its expertise in this area to help companies and institutions introduce new business models and efficient processes.

Contact:
Alexander Schmidt
Phone: +49 711 970-5351
E-Mail: alexander.schmidt@iao.fraunhofer.de

Weitere Informationen:

https://www.iao.fraunhofer.de/lang-en/about-us/press-and-media/1273-combating-tr...
http://www.stuttgart.de/nachhaltig-mobil
https://blog.telefonica.de/daten-stiften-nutzen

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>