Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avenio tram commences passenger service in The Hague

03.11.2015

For Dutch tram operator HTM, today marks the start of passenger services with brand new Siemens trams in The Hague, Netherlands. The first Avenio will run on line 2, which connects the western suburb of Kraayenstein with Leidschendam in the northeast via The Hague's main station. The Siemens trams will also gradually progress to operating on lines 1, 9, 15 and 17, with test runs already being conducted on the next route earmarked for Avenio, line 11. HTM has ordered a total of 60 Avenio trams from Siemens.

"Before commencing passenger services, we carried out extensive tests, as we make no compromise when it comes to safety. I am very satisfied with the results, and very proud of our employees for their hard work and dedication. I would like to thank the metropolitan region of Rotterdam The Hague (MRDH) and all the local authorities involved for making this step forward possible.

I would also like to take the opportunity to express my appreciation to the manufacturer, Siemens, for having achieved these results. Siemens has built the trams according to our requirements and wishes – and it is now time for our passengers to take over," says Jaap Bierman, CEO of HTM.

"The Hague is the second city to operate passenger services with our trams. The test runs have already shown that the Avenio is well-equipped for this city's tram network, which is in service more than 150 years. By virtue of its exceptionally smooth and quiet operating profile, it is ultimately passengers who will benefit the most from the Avenio," adds Sandra Gott-Karlbauer, CEO of Urban Transport at Siemens.

The Hague is carrying out extensive structural work along the lines to enable operation of the new low-floor trams, with tracks being renewed and all stops to receive new, specially adapted tram platforms. More than half of the tracks and stops have already been converted to accommodate the new trams.

For further information on Mobility Division, please see www.siemens.com/mobility


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry.

The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015110059MOEN


Contact
Ms. Ellen Schramke
Mobility Division
Siemens AG

Nonnendammallee 101

13629 Berlin

Germany

Tel: +49 (30) 386-22370

ellen.schramke​@siemens.com

Ellen Schramke | Siemens Mobility

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>