Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avenio tram commences passenger service in The Hague

03.11.2015

For Dutch tram operator HTM, today marks the start of passenger services with brand new Siemens trams in The Hague, Netherlands. The first Avenio will run on line 2, which connects the western suburb of Kraayenstein with Leidschendam in the northeast via The Hague's main station. The Siemens trams will also gradually progress to operating on lines 1, 9, 15 and 17, with test runs already being conducted on the next route earmarked for Avenio, line 11. HTM has ordered a total of 60 Avenio trams from Siemens.

"Before commencing passenger services, we carried out extensive tests, as we make no compromise when it comes to safety. I am very satisfied with the results, and very proud of our employees for their hard work and dedication. I would like to thank the metropolitan region of Rotterdam The Hague (MRDH) and all the local authorities involved for making this step forward possible.

I would also like to take the opportunity to express my appreciation to the manufacturer, Siemens, for having achieved these results. Siemens has built the trams according to our requirements and wishes – and it is now time for our passengers to take over," says Jaap Bierman, CEO of HTM.

"The Hague is the second city to operate passenger services with our trams. The test runs have already shown that the Avenio is well-equipped for this city's tram network, which is in service more than 150 years. By virtue of its exceptionally smooth and quiet operating profile, it is ultimately passengers who will benefit the most from the Avenio," adds Sandra Gott-Karlbauer, CEO of Urban Transport at Siemens.

The Hague is carrying out extensive structural work along the lines to enable operation of the new low-floor trams, with tracks being renewed and all stops to receive new, specially adapted tram platforms. More than half of the tracks and stops have already been converted to accommodate the new trams.

For further information on Mobility Division, please see www.siemens.com/mobility


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry.

The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015110059MOEN


Contact
Ms. Ellen Schramke
Mobility Division
Siemens AG

Nonnendammallee 101

13629 Berlin

Germany

Tel: +49 (30) 386-22370

ellen.schramke​@siemens.com

Ellen Schramke | Siemens Mobility

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>