Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zebra finches change their call communication pattern according to their reproductive status


The vocal repertoire of songbirds not only consists of complex song which is mainly uttered in the breeding season but is complemented by a large number of simpler calls. Their function however is still poorly understood. Scientists from the Max Planck Institute for Ornithology in Seewiesen in Germany now recorded the calls of individual zebra finches behaving freely inside groups, and found that the birds change their call repertoire and calling behaviour in the group over the course of the breeding cycle. Using tiny microphone transmitters they discovered perfectly timed patterns of call communication that were associated with successful egg-laying.

Songbird song is a conspicuous behaviour that not only fascinates bird lovers but has turned into a major scientific research objective. Due to their complexity, songs can easily be quantified and song changes can be related to various biological processes.

zebra finches in the wild. Image: Lisa Gill

Calls are less conspicuous and might be less complex in structure, therefore the investigation of calls has been rather neglected by researchers – even though they are frequently used by songbirds for direct communication.

This is also the case in the zebra finch, a songbird native to Australia that lives in colonies and produces several thousand calls per day. So far it was not possible to investigate in detail the role of these calls due to the difficulty to record and assign individual calls in the presence of conspecifics, let alone in a large group.

Using state-of-the art recording techniques, scientists from the Max Planck Institute for Ornithology now succeeded at this task. They equipped the birds with small radio transmitter backpacks and were able to record the entire call repertoire of the individuals within a group.

In total 32 finches wearing this backpack were first kept in single-sex aviaries to get used to this high-tech equipment. Recordings began when the researchers transferred four males and four females into a large aviary.

Shortly thereafter the birds started to form pairs and as soon as nesting material was available, they immediately commenced with nest building which was followed, albeit not in all pairs, by egg laying. The researchers found that during the breeding cycle, but especially when pairs began building nests, the birds changed the usage of certain calls and started using different call types, in particular more so-called “cackle” calls.

Calls were characterised by exactly timed back-and-forth interactions, and, over time, were directed more and more towards their partner than other members of the group.

Pairs that performed more of these call exchanges during nesting were more likely to lay eggs. Thus, both the timing and the type of calls used in pair communication are important for a successful breeding attempt, says Lisa Gill, first author of the study. Zebra finches form life-long pairs and live in predominantly arid habitats in Australia.

They are able to breed year-round as long as their unpredictable environment permits, for example when sudden rainfall occurs. For this, pairs must be able to quickly change their reproductive status for successful breeding. “A flexible call repertoire in response to a changing environment could be important for the birds’ biological fitness”, concludes Gill. (SL)

Original work:
Patterns of call communication between group-housed zebra finches change during the breeding cycle
Lisa F. Gill, Wolfgang Goymann, Andries Ter Maat, Manfred Gahr
Published on elife (Open Access) on October 6, 2015:

Lisa Gill
Department of Behavioural Neurobiology
Max Planck Institute for Ornithology
D-82319 Seewiesen/Germany
Tel.: 08157 932 388

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>