Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra finches change their call communication pattern according to their reproductive status

06.10.2015

The vocal repertoire of songbirds not only consists of complex song which is mainly uttered in the breeding season but is complemented by a large number of simpler calls. Their function however is still poorly understood. Scientists from the Max Planck Institute for Ornithology in Seewiesen in Germany now recorded the calls of individual zebra finches behaving freely inside groups, and found that the birds change their call repertoire and calling behaviour in the group over the course of the breeding cycle. Using tiny microphone transmitters they discovered perfectly timed patterns of call communication that were associated with successful egg-laying.

Songbird song is a conspicuous behaviour that not only fascinates bird lovers but has turned into a major scientific research objective. Due to their complexity, songs can easily be quantified and song changes can be related to various biological processes.


zebra finches in the wild. Image: Lisa Gill

Calls are less conspicuous and might be less complex in structure, therefore the investigation of calls has been rather neglected by researchers – even though they are frequently used by songbirds for direct communication.

This is also the case in the zebra finch, a songbird native to Australia that lives in colonies and produces several thousand calls per day. So far it was not possible to investigate in detail the role of these calls due to the difficulty to record and assign individual calls in the presence of conspecifics, let alone in a large group.

Using state-of-the art recording techniques, scientists from the Max Planck Institute for Ornithology now succeeded at this task. They equipped the birds with small radio transmitter backpacks and were able to record the entire call repertoire of the individuals within a group.

In total 32 finches wearing this backpack were first kept in single-sex aviaries to get used to this high-tech equipment. Recordings began when the researchers transferred four males and four females into a large aviary.

Shortly thereafter the birds started to form pairs and as soon as nesting material was available, they immediately commenced with nest building which was followed, albeit not in all pairs, by egg laying. The researchers found that during the breeding cycle, but especially when pairs began building nests, the birds changed the usage of certain calls and started using different call types, in particular more so-called “cackle” calls.

Calls were characterised by exactly timed back-and-forth interactions, and, over time, were directed more and more towards their partner than other members of the group.

Pairs that performed more of these call exchanges during nesting were more likely to lay eggs. Thus, both the timing and the type of calls used in pair communication are important for a successful breeding attempt, says Lisa Gill, first author of the study. Zebra finches form life-long pairs and live in predominantly arid habitats in Australia.

They are able to breed year-round as long as their unpredictable environment permits, for example when sudden rainfall occurs. For this, pairs must be able to quickly change their reproductive status for successful breeding. “A flexible call repertoire in response to a changing environment could be important for the birds’ biological fitness”, concludes Gill. (SL)

Original work:
Patterns of call communication between group-housed zebra finches change during the breeding cycle
Lisa F. Gill, Wolfgang Goymann, Andries Ter Maat, Manfred Gahr
Published on elife (Open Access) on October 6, 2015: http://elifesciences.org/content/4/e07770

Contact:
Lisa Gill
Department of Behavioural Neurobiology
Max Planck Institute for Ornithology
D-82319 Seewiesen/Germany
Email: lgill@orn.mpg.de
Tel.: 08157 932 388

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:
http://www.orn.mpg.de

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>