Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast protein network could provide insights into human obesity

02.06.2015

A team of biologists and a mathematician have identified and characterized a network composed of 94 proteins that work together to regulate fat storage in yeast.

"Removal of any one of the proteins results in an increase in cellular fat content, which is analogous to obesity," says study coauthor Bader Al-Anzi, a research scientist at Caltech.


The "fatter" yeast cells that have had SNF4 knocked out. The larger fat droplets are colored green.

Courtesy of Patrick Arpp/Caltech

The findings, detailed in the May issue of the journal PLOS Computational Biology, suggest that yeast could serve as a valuable test organism for studying human obesity.

"Many of the proteins we identified have mammalian counterparts, but detailed examinations of their role in humans has been challenging," says Al-Anzi. "The obesity research field would benefit greatly if a single-cell model organism such as yeast could be used--one that can be analyzed using easy, fast, and affordable methods."

Using genetic tools, Al-Anzi and his research assistant Patrick Arpp screened a collection of about 5,000 different mutant yeast strains and identified 94 genes that, when removed, produced yeast with increases in fat content, as measured by quantitating fat bands on thin-layer chromatography plates. Other studies have shown that such "obese" yeast cells grow more slowly than normal, an indication that in yeast as in humans, too much fat accumulation is not a good thing. "A yeast cell that uses most of its energy to synthesize fat that is not needed does so at the expense of other critical functions, and that ultimately slows down its growth and reproduction," Al-Anzi says.

When the team looked at the protein products of the genes, they discovered that those proteins are physically bonded to one another to form an extensive, highly clustered network within the cell.

Such a configuration cannot be generated through a random process, say study coauthors Sherif Gerges, a bioinformatician at Princeton University, and Noah Olsman, a graduate student in Caltech's Division of Engineering and Applied Science, who independently evaluated the details of the network. Both concluded that the network must have formed as the result of evolutionary selection.

In human-scale networks, such as the Internet, power grids, and social networks, the most influential or critical nodes are often, but not always, those that are the most highly connected.

The team wondered whether the fat-storage network exhibits this feature, and, if not, whether some other characteristics of the nodes would determine which ones were most critical. Then, they could ask if removing the genes that encode the most critical nodes would have the largest effect on fat content.

To examine this hypothesis further, Al-Anzi sought out the help of a mathematician familiar with graph theory, the branch of mathematics that considers the structure of nodes connected by edges, or pathways. "When I realized I needed help, I closed my laptop and went across campus to the mathematics department at Caltech," Al-Anzi recalls. "I walked into the only office door that was open at the time, and introduced myself."

The mathematician that Al-Anzi found that day was Christopher Ormerod, a Taussky-Todd Instructor in Mathematics at Caltech. Al-Anzi's data piqued Ormerod's curiosity. "I was especially struck by the fact that connections between the proteins in the network didn't appear to be random," says Ormerod, who is also a coauthor on the study. "I suspected there was something mathematically interesting happening in this network."

With the help of Ormerod, the team created a computer model that suggested the yeast fat network exhibits what is known as the small-world property. This is akin to a social network that contains many different local clusters of people who are linked to each other by mutual acquaintances, so that any person within the cluster can be reached via another person through a small number of steps.

This pattern is also seen in a well-known network model in graph theory, called the Watts-Strogatz model. The model was originally devised to explain the clustering phenomenon often observed in real networks, but had not previously been applied to cellular networks.

Ormerod suggested that graph theory might be used to make predictions that could be experimentally proven. For example, graph theory says that the most important nodes in the network are not necessarily the ones with the most connections, but rather those that have the most high-quality connections. In particular, nodes having many distant or circuitous connections are less important than those with more direct connections to other nodes, and, especially, direct connections to other important nodes. In mathematical jargon, these important nodes are said to have a high "centrality score."

"In network analysis, the centrality of a node serves as an indicator of its importance to the overall network," Ormerod says.

"Our work predicts that changing the proteins with the highest centrality scores will have a bigger effect on network output than average," he adds. And indeed, the researchers found that the removal of proteins with the highest predicted centrality scores produced yeast cells with a larger fat band than in yeast whose less-important proteins had been removed.

The use of centrality scores to gauge the relative importance of a protein in a cellular network is a marked departure from how proteins traditionally have been viewed and studied--that is, as lone players, whose characteristics are individually assessed. "It was a very local view of how cells functioned," Al-Anzi says. "Now we're realizing that the majority of proteins are parts of signaling networks that perform specific tasks within the cell."

Moving forward, the researchers think their technique could be applicable to protein networks that control other cellular functions--such as abnormal cell division, which can lead to cancer.

"These kinds of methods might allow researchers to determine which proteins are most important to study in order to understand diseases that arise when these functions are disrupted," says Kai Zinn, a professor of biology at Caltech and the study's senior author. "For example, defects in the control of cell growth and division can lead to cancer, and one might be able to use centrality scores to identify key proteins that regulate these processes. These might be proteins that had been overlooked in the past, and they could represent new targets for drug development."

###

The paper is entitled "Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network."

Media Contact

Deborah Williams-Hedges
debwms@caltech.edu
626-395-3227

 @caltech

http://www.caltech.edu 

Deborah Williams-Hedges | EurekAlert!

Further reports about: Network connections genes humans mathematics organism proteins

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>