Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How yeast chromosomes avoid the bad breaks

The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence.

During meiosis—the cell division that produces sperm and eggs—repetitive elements place the genome at risk for dangerous rearrangements from genome reshuffling. This recombination typically does not occur in repetitive DNA, in part because much of it is assembled into specialized heterochromatin. Other mechanisms that restrain recombination in repetitive DNA have remained elusive, until now.

In a paper published online today in the journal Nature, researchers in the lab of Whitehead Institute Fellow Andreas Hochwagen describe a defense mechanism in yeast that shields repetitive DNA from meiotic DNA recombination. According to the work of Hochwagen and his colleagues, the protective repeat-associated heterochromatin makes the DNA segments near the boundary of the heterochromatin particularly vulnerable to inappropriate meiotic recombination. DNA elements surrounding these at-risk border regions are protected from meiotic recombination by a novel system involving the concerted action of two proteins, pachytene checkpoint protein 2 (Pch2) and origin recognition complex subunit 1 (Orc1), which are present in organisms ranging from yeast to humans.

During meiosis an organism's chromosomes pair up, with every pair containing a copy inherited from each of the organism's parents. To match up the chromosomes, the cell breaks both strands of the chromosomes' DNA in multiple locations, and the chromosomes swap DNA sections that have the same sequence. Later, when the paired chromosomes are pulled apart, each resulting chromosome is a patchwork of maternal and paternal genes. The creation of reshuffled chromosomes assists chromosome assortment into spore, sperm, and egg cells, but it also has a profound effect on evolution, because it produces new genetic variants.

"To me it's always been very confusing why you would break your genome. It's your blueprint," says Hochwagen. "Obviously, it helps you make new variations and combinations of genes, but it's incredibly dangerous and you really need to make sure that it happens the right way."

In repetitive DNA, this system of breaking and swapping is particularly hazardous, as there are many options that a section of repeat DNA could be swapped with. If the wrong repeat is chosen, a chromosome can gain or lose a large chunk of DNA. In humans, such mistakes have been linked to genetic neurological and developmental disorders, including autism spectrum disorders and schizophrenia.

By studying the highly repetitive DNA that makes up yeast's ribosomal DNA (rDNA), Gerben Vader and Hannah Blitzblau, first authors of the Nature paper and postdoctoral researchers in Hochwagen's lab, have determined that yeast's rDNA is protected from inappropriate recombination by two mechanisms. It was previously shown that heterochromatin prevents chromosome breakage in repetitive DNA. But in their paper, Vader and Blitzblau demonstrate that, ironically, the protective heterochromatin renders the transition zone between the repetitive and non-repetitive DNA particularly fragile. The yeast cell buttresses these borders with Pch2 and Orc1, which prevent chromosome breakage across the entire transition zone. In their absence, rDNA frequently gains or loses repeats.

"We had previously seen very little chromosome breakage in large regions close to repetitive DNA," says Blitzblau. "The finding that the borders of heterochromatin are particularly fragile helps us to understand why the cell invests in specifically protecting these regions."

Although the modes of heterochromatin formation vary between organisms, similar strategies may be at work in higher organisms, too.

"In mice and flies repetitive DNA is also packaged into heterochromatin, and there is evidence that very few breaks happen in these regions during meiosis," says Vader. "So it is possible that this type of protection is a general phenomenon."

This research was supported by the National Institutes of Health (NIH), the Netherlands Organization for Scientific Research, and Howard Hughes Medical Institute (HHMI).

Andreas Hochwagen's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted.

Full Citations:

"Protection of repetitive DNA borders from self-induced meiotic instability"
Nature, online August 7, 2011.
Gerben Vader (1*), Hannah G. Blitzblau (1*), Mihoko A. Tame (1), Jill E. Falk (1,3), Lisa Curtin (1,2) and Andreas Hochwagen (1).
1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
2. Somerville High School, Somerville, Massachusetts 02143, USA.
3. Present address: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

* These authors contributed equally to this work

Nicole Giese | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>