Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How yeast chromosomes avoid the bad breaks

08.08.2011
The human genome is peppered with repeated DNA elements that can vary from a few to thousands of consecutive copies of the same sequence.

During meiosis—the cell division that produces sperm and eggs—repetitive elements place the genome at risk for dangerous rearrangements from genome reshuffling. This recombination typically does not occur in repetitive DNA, in part because much of it is assembled into specialized heterochromatin. Other mechanisms that restrain recombination in repetitive DNA have remained elusive, until now.

In a paper published online today in the journal Nature, researchers in the lab of Whitehead Institute Fellow Andreas Hochwagen describe a defense mechanism in yeast that shields repetitive DNA from meiotic DNA recombination. According to the work of Hochwagen and his colleagues, the protective repeat-associated heterochromatin makes the DNA segments near the boundary of the heterochromatin particularly vulnerable to inappropriate meiotic recombination. DNA elements surrounding these at-risk border regions are protected from meiotic recombination by a novel system involving the concerted action of two proteins, pachytene checkpoint protein 2 (Pch2) and origin recognition complex subunit 1 (Orc1), which are present in organisms ranging from yeast to humans.

During meiosis an organism's chromosomes pair up, with every pair containing a copy inherited from each of the organism's parents. To match up the chromosomes, the cell breaks both strands of the chromosomes' DNA in multiple locations, and the chromosomes swap DNA sections that have the same sequence. Later, when the paired chromosomes are pulled apart, each resulting chromosome is a patchwork of maternal and paternal genes. The creation of reshuffled chromosomes assists chromosome assortment into spore, sperm, and egg cells, but it also has a profound effect on evolution, because it produces new genetic variants.

"To me it's always been very confusing why you would break your genome. It's your blueprint," says Hochwagen. "Obviously, it helps you make new variations and combinations of genes, but it's incredibly dangerous and you really need to make sure that it happens the right way."

In repetitive DNA, this system of breaking and swapping is particularly hazardous, as there are many options that a section of repeat DNA could be swapped with. If the wrong repeat is chosen, a chromosome can gain or lose a large chunk of DNA. In humans, such mistakes have been linked to genetic neurological and developmental disorders, including autism spectrum disorders and schizophrenia.

By studying the highly repetitive DNA that makes up yeast's ribosomal DNA (rDNA), Gerben Vader and Hannah Blitzblau, first authors of the Nature paper and postdoctoral researchers in Hochwagen's lab, have determined that yeast's rDNA is protected from inappropriate recombination by two mechanisms. It was previously shown that heterochromatin prevents chromosome breakage in repetitive DNA. But in their paper, Vader and Blitzblau demonstrate that, ironically, the protective heterochromatin renders the transition zone between the repetitive and non-repetitive DNA particularly fragile. The yeast cell buttresses these borders with Pch2 and Orc1, which prevent chromosome breakage across the entire transition zone. In their absence, rDNA frequently gains or loses repeats.

"We had previously seen very little chromosome breakage in large regions close to repetitive DNA," says Blitzblau. "The finding that the borders of heterochromatin are particularly fragile helps us to understand why the cell invests in specifically protecting these regions."

Although the modes of heterochromatin formation vary between organisms, similar strategies may be at work in higher organisms, too.

"In mice and flies repetitive DNA is also packaged into heterochromatin, and there is evidence that very few breaks happen in these regions during meiosis," says Vader. "So it is possible that this type of protection is a general phenomenon."

This research was supported by the National Institutes of Health (NIH), the Netherlands Organization for Scientific Research, and Howard Hughes Medical Institute (HHMI).

Andreas Hochwagen's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted.

Full Citations:

"Protection of repetitive DNA borders from self-induced meiotic instability"
Nature, online August 7, 2011.
Gerben Vader (1*), Hannah G. Blitzblau (1*), Mihoko A. Tame (1), Jill E. Falk (1,3), Lisa Curtin (1,2) and Andreas Hochwagen (1).
1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
2. Somerville High School, Somerville, Massachusetts 02143, USA.
3. Present address: David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

* These authors contributed equally to this work

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>