Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays reveal the photonic crystals in butterfly wings that create color

13.06.2016

Scientists used X-rays to discover what creates one butterfly effect: how the microscopic structures on the insect's wings reflect light to appear as brilliant colors to the eye.

The results, published today in Science Advances, could help researchers mimic the effect for reflective coatings, fiber optics or other applications.


When you look very close up at a butterfly wing, you can see this patchwork map of lattices with slightly different orientations (colors added to illustrate the domains). Scientists think this structure helps create the brilliant "sparkle" of the wings.

Image courtesy Ian McNulty/Science

We've long known that butterflies, lizards and opals all use complex structures called photonic crystals to scatter light and create that distinctive iridescent look. But we knew less about the particulars of how these natural structures grow and what they look like at very, very small sizes--and how we might steal their secrets to make our own technology.

A powerful X-ray microscope at the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility, provided just such a view to scientists from the University of California-San Diego, Yale University and the DOE's Argonne National Laboratory.

They took a tiny piece of a wing scale from the vivid green Kaiser-i-Hind butterfly, Teinopalpus imperialis, and ran X-ray studies to study the organization of the photonic crystals in the scale.

At sizes far too small to be seen by the human eye, the scales look like a flat patchwork map with sections of lattices, or "domains," that are highly organized but have slightly different orientations.

"This explains why the scales appear to have a single color," said UC-San Diego's Andrej Singer, who led the work. "We also found tiny crystal irregularities that may enhance light-scattering properties, making the butterfly wings appear brighter."

These occasional irregularities appear as defects where the edges of the domains met each other.

"We think this may indicate the defects grow as a result of the chirality --the left or right-handedness--of the chitin molecules from which butterfly wings are formed," said coauthor Ian McNulty, an X-ray physicist with the Center for Nanoscale Materials at Argonne, also a DOE Office of Science User Facility.

These crystal defects had never been seen before, he said.

Defects sound as though they're a problem, but they can be very useful for determining how a material behaves--helping it to scatter more green light, for example, or to concentrate light energy in other useful ways.

"It would be interesting to find out whether this is an intentional result of the biological template for these things, and whether we can engineer something similar," he said.

The observations, including that there are two distinct kinds of boundaries between domains, could shed more light on how these structures assemble themselves and how we could mimic such growth to give our own materials new properties, the authors said.

The X-ray studies provided a unique look because they are non-destructive--other microscopy techniques often require slicing the sample into paper-thin layers and staining it with dyes for contrast , McNulty said.

"We were able to map the entire three-micron thickness of the scale intact," McNulty said. (Three microns is about the width of a strand of spider silk.)

The wing scales were studied at the 2-ID-B beamline at the Advanced Photon Source. The results are published in an article, "Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales," in Science Advances. Other researchers on the study were Oleg Shpyrko, Leandra Boucheron and Sebastian Dietze (UC-San Diego); David Vine (Argonne/Berkeley National Laboratory); and Katharine Jensen, Eric Dufresne, Richard Prum and Simon Mochrie (Yale).

The research was supported by the U.S. Department of Energy Office of Science (Basic Energy Sciences).

###

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Richard Fenner
fenner@aps.anl.gov
630-252-5280

 @argonne

http://www.anl.gov 

Richard Fenner | EurekAlert!

Further reports about: Photon Source X-ray butterfly crystals photonic crystals

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>