Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays reveal the photonic crystals in butterfly wings that create color

13.06.2016

Scientists used X-rays to discover what creates one butterfly effect: how the microscopic structures on the insect's wings reflect light to appear as brilliant colors to the eye.

The results, published today in Science Advances, could help researchers mimic the effect for reflective coatings, fiber optics or other applications.


When you look very close up at a butterfly wing, you can see this patchwork map of lattices with slightly different orientations (colors added to illustrate the domains). Scientists think this structure helps create the brilliant "sparkle" of the wings.

Image courtesy Ian McNulty/Science

We've long known that butterflies, lizards and opals all use complex structures called photonic crystals to scatter light and create that distinctive iridescent look. But we knew less about the particulars of how these natural structures grow and what they look like at very, very small sizes--and how we might steal their secrets to make our own technology.

A powerful X-ray microscope at the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility, provided just such a view to scientists from the University of California-San Diego, Yale University and the DOE's Argonne National Laboratory.

They took a tiny piece of a wing scale from the vivid green Kaiser-i-Hind butterfly, Teinopalpus imperialis, and ran X-ray studies to study the organization of the photonic crystals in the scale.

At sizes far too small to be seen by the human eye, the scales look like a flat patchwork map with sections of lattices, or "domains," that are highly organized but have slightly different orientations.

"This explains why the scales appear to have a single color," said UC-San Diego's Andrej Singer, who led the work. "We also found tiny crystal irregularities that may enhance light-scattering properties, making the butterfly wings appear brighter."

These occasional irregularities appear as defects where the edges of the domains met each other.

"We think this may indicate the defects grow as a result of the chirality --the left or right-handedness--of the chitin molecules from which butterfly wings are formed," said coauthor Ian McNulty, an X-ray physicist with the Center for Nanoscale Materials at Argonne, also a DOE Office of Science User Facility.

These crystal defects had never been seen before, he said.

Defects sound as though they're a problem, but they can be very useful for determining how a material behaves--helping it to scatter more green light, for example, or to concentrate light energy in other useful ways.

"It would be interesting to find out whether this is an intentional result of the biological template for these things, and whether we can engineer something similar," he said.

The observations, including that there are two distinct kinds of boundaries between domains, could shed more light on how these structures assemble themselves and how we could mimic such growth to give our own materials new properties, the authors said.

The X-ray studies provided a unique look because they are non-destructive--other microscopy techniques often require slicing the sample into paper-thin layers and staining it with dyes for contrast , McNulty said.

"We were able to map the entire three-micron thickness of the scale intact," McNulty said. (Three microns is about the width of a strand of spider silk.)

The wing scales were studied at the 2-ID-B beamline at the Advanced Photon Source. The results are published in an article, "Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales," in Science Advances. Other researchers on the study were Oleg Shpyrko, Leandra Boucheron and Sebastian Dietze (UC-San Diego); David Vine (Argonne/Berkeley National Laboratory); and Katharine Jensen, Eric Dufresne, Richard Prum and Simon Mochrie (Yale).

The research was supported by the U.S. Department of Energy Office of Science (Basic Energy Sciences).

###

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Richard Fenner
fenner@aps.anl.gov
630-252-5280

 @argonne

http://www.anl.gov 

Richard Fenner | EurekAlert!

Further reports about: Photon Source X-ray butterfly crystals photonic crystals

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>