Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


X-Ray Study Reveals Division of Labor in Cell Health Protein


Identical Substructures in 'TH Protein' Couple Two Crucial Cellular Functions

Researchers working in part at the Department of Energy’s SLAC National Accelerator Laboratory have discovered that a key protein for cell health, which has recently been linked to diabetes, cancer and other diseases, can multitask by having two identical protein parts divide labor.

C. David Stout/The Scripps Research Institute

A recent study performed in part at SLAC’s SSRL X-ray facility has provided new insights into how the critical mitochondrial enzyme transhydrogenase, or TH, works in a key process that maintains healthy cells. The crystal structure of TH shows two copies of the molecule (left and right), each of which contains three domains (I, II, III). Structural asymmetry is observed for domain III: One of the structures is facing up (green) to catalyze the production of NADPH from its precursor (black spheres); the other is facing down (magenta) towards the transmembrane domain II to facilitate the transit of a proton. Labels "in" and "out" denote the mitochondrial matrix and the space outside the inner mitochondrial membrane, respectively.

The TH enzyme, short for transhydrogenase, is a crucial protein for most forms of life. In humans and other higher organisms, it works within mitochondria – tiny, double-hulled oxygen reactors inside cells that help power most cellular processes.

“Despite its importance, TH has been one of the least studied mitochondrial enzymes,” said C. David Stout, a scientist at The Scripps Research Institute whose group led the research. The new study, published Jan. 9 in Science, is an important step toward understanding how this protein manages to perform two crucial cellular tasks at the same time.

Two Crucial Processes

As a mitochondrion burns oxygen, it pumps protons out of its innermost compartment, or matrix. Part of the TH protein extends through the membrane that surrounds the matrix; it allows a one-by-one flow of protons back through the membrane. This proton influx, in turn, is linked to the production of NADPH, a compound crucial for defusing oxygen radicals that are harmful to cells.

But how do TH enzymes couple proton transport and NADPH production? Although Stout’s laboratory and others have previously described portions of the TH enzyme that protrude from the membrane into the mitochondrial matrix, a precise understanding of TH’s mechanism has been elusive. The enzyme has an exceptionally loose structure that makes it hard to evaluate by X-ray crystallography, the standard tool for determining structures of large proteins.

“Key details we’ve been lacking include the structure of TH’s transmembrane portion, and the way in which the parts assemble into the whole enzyme,” said Josephine H. Leung, a graduate student in the Stout laboratory who was the lead author of the new study.

For the first time, the team was now able to determine precise details of the transmembrane portion using X-rays from SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) and Argonne National Laboratory’s Advanced Photon Source (APS), both DOE Office of Science User Facilities. Together with X-ray and electron microscopy data of the whole protein, the study provided major clues as to how TH works.

Flipping Functions

The analysis revealed that two identical copies of TH are bound together in what is called a dimer, and that one copy appears to be involved in proton transport while the other takes part in NADPH production. “Our new study helps clear up some mysteries – suggesting how the enzyme structure might harness protons and indicating that its two sides are able to alternate functions, always staying in balance,” Stout said.

Attached to TH’s transmembrane structure, just inside the mitochondrial matrix, is the “domain III” structure, which binds NADPH’s precursor molecule during NADPH synthesis. Previously, scientists did not understand how two such structures could work side by side in the TH dimer and not interfere with each other’s activity.

The new data suggest that these side-by-side structures are highly flexible and always have different orientations.

“Our most striking finding was that the two domain III structures are not symmetric – one of them faces up while the other faces down,” said Leung.

In particular, one of the structures is apparently oriented to catalyze the production of NADPH, while the other is turned towards the membrane, perhaps to facilitate transit of a proton. The new structural model indicates that with each proton transit, the two domain III structures flip and switch their functions. “We suspect that the passage of the proton is what somehow causes this flipping of the domain III structures,” said Leung.

But much work remains to be done to determine TH’s precise structure and mechanism. For example, the new structural data provide evidence of a likely proton channel in the TH transmembrane region, but show only a closed conformation of that structure. “We suspect that this channel can have another, open conformation that lets the proton pass through, so that’s one of the details we want to study further,” said Leung.

Research funding for the SSRL Structural Molecular Biology Program was provided by the DOE Office of Biological and Environmental Research and the National Institutes of Health, National Institute of General Medical Sciences.

Editor’s note: This news feature is based on an earlier news release by The Scripps Research Institute.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit .

Andrew Gordon | newswise

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>