Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wood mice use unexpected mechanism for magnetoreception


For migratory birds we know it for more than half a century: They use the earth’s magnetic field to orient during the long journey towards winter- or breeding grounds. 

But also mammals do have a magnetic sense. The most famous representative is the subterraneous mole-rat which probably employs the magnetic sense to navigate in its featureless and dark environment.

Since the first demonstration of the mole-rat magnetic sense in the early 1990s, this highly specialized rodent species has become a model organism for studies on magnetoreception in mammals.

It was unclear, however, if and to what extant the results would apply to other mammals, since mole-rats are highly adapted to their subterraneous ecotope.

For this reason, an international team around UDE-researcher Dr. E. Pascal Malkemper investigated the magnetic sense of the surface dwelling, less specialized European wood mouse and obtained astonishing results.

The receptor mechanism used by the wood mice seems to be distinctly different from that of their subterraneous relatives and instead bear similarities to the magnetic sense of migratory birds.

Like the birds, but in contrast to mole-rats, the wood mice were influenced by weak electromagnetic radiation in the radiofrequency range, as it is commonly present in larger cities.

The new insights pave the way for further characterization of the magnetoreceptors, which so far have not been undisputedly described in any animal species. The results were published in Nature’s open access Journal Scientific Reports.

Weitere Informationen:

Beate Kostka | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: dark electromagnetic radiation mammals mechanism migratory birds navigate organism rodent sense species

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>