Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With the right algorithms: optimizing cell cycle analysis

07.01.2016

Scientists of the the Helmholtz Zentrum München have found a new approach improving the identification of cell cycle phases using imaging flow cytometry data. They could avoid the use of stains by applying algorithms from machine learning. With the help of an imaging software they extracted hundreds of features from bright field and dark field images. Using this data they could generate algorithms that can sort the cells digitally.

So far fluorescent stains have been used to assign cells to their cell cycle phase. These chemicals damage the cells and may distort the results. Scientists of the Helmholtz Zentrum München in collaboration with the Broad Institute of MIT and Harvard, Swansea University, Newcastle University and The Francis Crick Institute have now found an alternative.


Cell cycle phases are assigned to bright and dark field images from imaging flow cytometry by using machine learning algorithms.

„We used two generally neglected data sources: the bright and the darkfield images“ says Thomas Blasi, PhD student at the ICB and first author of the publication. „We could use the information in these data for machine learning“. This approach makes it possible to not only classify cells, but also to digitally sort them with a high level of specificity. Based on these findings the Broad Institute and the Helmholtz Zentrum München also filed a provisional patent application.

„Computer-based classification of cells based on large population of cell images opens up new perspectives. This approach could also be used in many different contexts, not only for cell cycle analysis“, adds Prof. Dr. Dr. Fabian Theis, head of the ICB.

Further Information

Original publication:
Blasi T. et al. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nature Communications.
DOI: 10:1038/ncomms10256 (open access).

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de

The Institute of Computational Biology (ICB) develops and applies methods for the model-based description of biological systems, using a data-driven approach by integrating information on multiple scales ranging from single-cell time series to large-scale omics. Given the fast technological advances in molecular biology, the aim is to provide and collaboratively apply innovative tools with experimental groups in order to jointly advance the understanding and treatment of common human diseases. http://www.helmholtz-muenchen.de/icb

Weitere Informationen:

http://www.helmholtz-muenchen.de/

Susanne Eichacker | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>