Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Wimpy' antibody protects against kidney disease in mice


An antibody abundant in mice and previously thought to offer poor assistance in fighting against infection may actually play a key role in keeping immune responses in check and preventing more serious self-inflicted forms of kidney disease, researchers say.

Led by researchers at the University of Cincinnati (UC) and Cincinnati Children's Hospital Medical Center and published online Nov. 2, 2014, in the journal Nature, the study finds that the mouse antibody IgG1, which is made in large quantities and resembles a human antibody known as IgG4, may actually be protective.

"Antibodies protect against pathogens, in large part, by clumping them together and by activating other defenses, including a set of serum proteins, known as complement, and cells that have antibody-binding molecules on their surface called Fc receptors," says Fred Finkelman, MD, Walter A. and George McDonald Foundation Chair of Medicine and professor of medicine and pediatrics at UC.

Finkelman is also an immunobiology researcher at Cincinnati Children's Hospital Medical Center. Richard Strait, MD, an assistant professor of pediatrics at UC and an attending physician at Cincinnati Children's, is the first author of the research published in Nature.

"Surprisingly, most of the antibody made by mice is IgG1, which is relatively defective in its ability to clump pathogens, activate complement, and activate cells by binding to their Fc receptors," says Finkelman, also a physician at the Cincinnati Department of Veterans Affairs (VA) Medical Center. "Humans have a similar type of antibody, called IgG4, which is also relatively defective in these abilities.

"Why should you have such a wimpy antibody? It's the antibody made in the largest amount. Our thought was that in biology, you don't get anything for free," says Finkelman. "If an antibody can kill bacteria and viruses very well, it might also cause inflammation that can harm the animal that makes it. So maybe you need some of these wimpy antibodies to protect against that type of self-inflicted damage."

Researchers tested their hypothesis by studying what happens when genetically bred mice that cannot make IgG1 are injected with a foreign protein that would spur a normal mouse's immune system to produce IgG1. The genetically bred mouse instead produced another antibody known as IgG3, which affected capillaries in the kidneys and ultimately led to renal failure.

"The mouse's kidneys turned yellow because they essentially shut off blood flow and within a few days there was total destruction of the filtering part of the kidney called the glomerulus," explains Finkelman.

However, injecting IgG1 into mice that could not make the antibody prevented them from developing kidney disease, says Finkelman.

"These findings support our hypothesis about the reason for making antibodies such as mouse IgG1 and human IgG4," says Finkelman. "They also demonstrate a new type of kidney disease that can be caused by certain types of antibody, such as mouse IgG3, even without complement or Fc receptors. In addition, our findings suggest that antibodies such as human IgG4 might be useful for treating people who have diseases caused by other types of antibody."

These diseases include myasthenia gravis and blistering skin diseases, says Finkelman.

Myasthenia gravis is a chronic autoimmune neuromuscular disease characterized by varying degrees of weakness of the skeletal (voluntary) muscles of the body. Individuals with the ailment lose the ability to contract their muscles because their body produces an antibody that destroys acetylcholine receptors in muscle.

"The nerves in their muscles continue to fire and they release the chemical acetylcholine, but there is not much for the acetylcholine to bind to," says Finkelman. "These people become very weak and can actually die because they can no longer swallow well or breathe well."

Individuals with blistering skin diseases make antibodies against the molecules that hold skin cells together, says Finkelman. As a result, the skin cells separate from each other, forming blisters.

"People can lose a lot of fluid and can get infected very easily," says Finkelman. "These are very serious diseases and the treatment is not very good."

Funding for this study came from a U.S. Department of Veterans Affairs Merit Award, the National Institutes of Health (R01 A1072040), the University of Cincinnati and Cincinnati Children's Hospital Medical Center.

Co-authors include; Ashley Mahler, Nathaniel Barasa, Jörg Köhl, MD; Keith Stringer, MD; Shiva Kumar Shanmukhappa, DVM, PhD; David Witte, MD; Md Monir Hossain, PhD; Marat Khoudou; PhD; and Andrew Herr, PhD; all affiliated with the University of Cincinnati and/or Cincinnati Children's; Chaim Jacob, MD, PhD, University of Southern California School of Medicine; and Marc Ehlers, University of Lübeck, Germany. Köhl is also affiliated with the University of Lübeck, Germany. Monica Posgai, PhD, is a recent postdoctoral fellow at the University of Cincinnati.

Cedric Ricks | EurekAlert!
Further information:

Further reports about: Health Veterans acetylcholine activate diseases kidney disease muscles skin skin cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>