Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wild plants call to carnivores to get rid of pests -- could crops do the same?


Rose gardeners have a lot to say about aphids. Some may advise insecticides as a way to manage an infestation, but others will swear by live ladybugs (natural predators of aphids). The latter is more environmental friendly, and once the ladybugs run out of food to eat, they move on.

While this strategy may work in someone's backyard, it's not an option on a large farm. In an October 4 Trends in Plant Science Opinion paper, agricultural researchers in Sweden and Mexico argue that one way around the scalability problem is to bring back the odors and nectars found in wild plants that attract pest-eating predators. This could be done either through breeding programs or by using artificial devices.

This diagram shows how nectar can enhance the survival and efficiency of predators and thus allow the establishment of more stable populations of these biocontrol organisms.

Credit: Stenberg et al./Trends in Plant Science 2015

"Wild plants commonly emit natural odors when they are damaged that attract natural enemies of pest insects--even as humans we smell it when our neighbour is mowing the lawn - odors can carry very precise information," says co-author Martin Heil of CINVESTAV-Irapuato in Mexico.

"Agriculture has bred such defenses out of crops, and since these odors have no negative effects on human consumers, we want to replace what the plant would already be doing."

It's also not unusual for wild plants to produce nectar on their leaves to feed carnivores. While leaf-eating caterpillars or beetles are munching away on plant matter, predatory ants or wasps have a sugary substance to drink and a well-stocked spot to lay their eggs.

Heil and others theorize that the reason these rather helpful traits no longer exist in crops is because plant breeders and decision makers couldn't tell the difference between helpful insects and pests. Only in the past 30 years has it been recognized that plants use odors to communicate to one another and to other species. Such defenses involve multiple genes, however, and it won't be easy to simply bring them back.

One faster alternative would be to plant crops alongside other species that both attract carnivores and repel pests. The downside is that intercropping requires more work during harvesting and its success rate isn't 100%. Another option is to create mechanical dispensers that could release carnivore-calling odors and fungicidal nectar, which is something Heil and his team are now developing and testing.

"New regulations and changing consumer demands are gradually improving the prospects for more sustainable agriculture," Heil says. "This provides a ready market if we can give crops back their own immune system, either by breeding, genetic engineering, or replacing the traits artificially."


The authors receive funding from the Swedish research council Formas, CONACyT, the Swedish Energy Agency, the SAMBA project, the Future Forests Project, and the Swedish University of Agricultural Sciences.

Trends in Plant Science, Stenberg et al.: "Optimizing Crops for Biocontrol of Pests and Disease"

Trends in Plant Science (@TrendsPlantSci), published by Cell Press, is a monthly review journal that features broad coverage of basic plant science, from molecular biology through to ecology. Aimed at researchers, students, and teachers, its articles are authoritative and written by both leaders in the field and rising stars. For more information, please visit To receive media alerts for this or other Cell Press journals, please contact

Media Contact

Joseph Caputo


Joseph Caputo | EurekAlert!

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>