Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild mongooses avoid inbreeding with unusual reproductive strategy

11.06.2015

Successfully breeding mongoose pairs were less related than expected under random mating

Researchers studying banded mongooses in Uganda have discovered that these small mammals are able to discriminate between relatives and non-relatives to avoid inbreeding even when mating within their own closely related social group.


Banded mongooses in Uganda are pictured.

Credit: Jenni Sanderson, University of Exeter

Inbreeding can be a big problem for social species such as banded mongooses because they grow up in social groups consisting mainly of close relatives. This study is the first to suggest that social animals are able to avoid the costs of inbreeding without relying on un-related mating partners from other social groups.

Dr Jennifer Sanderson, from the University of Exeter, has been observing wild banded mongooses to understand how they avoid the negative aspects of inbreeding. The findings of the 16-year study are published today in the journal Molecular Ecology.

She found that while most social mammals avoid inbreeding by either not breeding or dispersing to a group of non-relatives, male banded mongooses avoid inbreeding by focusing their mating effort towards females within their extended family to which they are least related.

Although the researchers do not yet understand how they avoid inbreeding, the mongooses may use scent, or their highly individual calls, to help them gauge relatedness.

According to Dr Sanderson: "Wild animals are known to use a variety of tactics to avoid the costs associated with inbreeding but most of these tactics involve dispersal or waiting to encounter an unrelated immigrant. Our study has shown that both male and female banded mongooses are able to avoid inbreeding while mating within their family group even in the absence of immigration".

Dr Sanderson collaborated with Dr Hazel Nichols to collect thousands of genetic samples from the Ugandan mongooses which were then analysed at Liverpool John Moores University.

Dr Nichols from Liverpool John Moores University said: "We've used a large number of genetic markers to determine the parents of over 1500 banded mongoose pups. This has allowed us to quantify the occurrence of inbreeding and investigate the tactics used by both male and female banded mongooses to avoid it."

Banded mongooses are close relatives of the famous meerkat and are found living in stable social groups across Central and Eastern Africa. They are highly social, with most individuals remaining in their natal group surrounded by relatives for their whole lives.

Dr Sanderson found that when banded mongooses did breed with close relatives the resulting inbred offspring were significantly smaller than their outbred littermates when they emerged from the den for the first time. This finding is indicative of inbreeding depression and highlights the benefits to be gained from avoiding mating with close relatives.

Male banded mongooses actively guard females to gain access to mating opportunities, and the study shows this guarding behaviour is preferentially directed towards less closely related females.

Professor Cant from the University of Exeter, who leads the Banded Mongoose Research Project which has been observing the mammals' mating behaviours for over 20 years, said: "We've used a combination of behavioural observations and genetic analyses to investigate possible tactics of inbreeding avoidance in both male and female banded mongooses. It's not just the males who actively avoid mating with relatives; we also found that female banded mongooses may avoid inbreeding by upgrading from related mate-guards to unrelated mating partners."

The results of this study are the first to demonstrate a breeding system where both males and females are able to avoid inbreeding when mating within their extended family group and in the absence of unrelated immigrants.

This mechanism of inbreeding avoidance is previously unknown in cooperative breeders, but may be more important in species where there is variation in within-group relatedness, and where dispersal or extra-group mating opportunities are limited.

###

The study was funded by the European Research Council.

'Banded mongooses avoid inbreeding when mating with members of the same natal group' by Jennifer Sanderson, Jinliang Wang, Emma Vitikainen, Michael Cant & Hazel Nichols is published in the journal Molecular Ecology.

About the University of Exeter

The University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 19,000 students and is ranked 7th in The Times and The Sunday Times Good University Guide league table, 10th in The Complete University Guide and 9th in the Guardian University Guide 2015. In the 2014 Research Excellence Framework (REF), the University ranked 16th nationally, with 98% of its research rated as being of international quality. Exeter was The Sunday Times University of the Year 2012-13.

The University has four campuses. The Streatham and St Luke's campuses are in Exeter and there are two campuses in Cornwall, Penryn and Truro. The 2014-2015 academic year marks the 10-year anniversary of the two Cornwall campuses. In a pioneering arrangement in the UK, the Penryn Campus is jointly owned and managed with Falmouth University. At the campus, University of Exeter students can study programmes in the following areas: Animal Behaviour, Conservation Biology and Ecology, English, Environmental Science, Evolutionary Biology, Geography, Geology, History, Human Sciences, Marine Biology, Mining and Minerals Engineering, Politics and International Relations, Renewable Energy and Zoology.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the past few years; including landmark new student services centres - the Forum in Exeter and The Exchange at Penryn - together with world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. There are plans for another £330 million of investment between now and 2016.

http://www.exeter.ac.uk/cornwall

About the University of Exeter's Centre for Ecology and Conservation (CEC)

Staff at the Centre for Ecology and Conservation, based on the Penryn Campus, undertake cutting-edge research that focusses on whole organism biology. The CEC has three interlinked research groups: Behaviour, Ecology and Conservation, and Evolution which constitute 40 academics and over 100 early career researchers. It engages widely with businesses, charities and government agencies and organisations in Cornwall, the Isles of Scilly and beyond to translate its research into societal impact. Staff at the CEC deliver educational programs to some 500 undergraduate and 100 postgraduate students.

A new £5.5 million Science and Engineering Research Support Facility (SERSF) is currently under construction at the Penryn Campus. The facility will bring pioneering business, science and engineering together and will provide space for the growing CEC alongside the University of Exeter Business School, which is expanding into Cornwall, and the University's Marine Renewables team.

The University of Exeter and Falmouth University are founding partners in the Combined Universities in Cornwall (CUC), a unique collaboration between six universities and colleges to promote regional economic regeneration through Higher Education, funded mainly by the European Union (Objective One and Convergence), the South West Regional Development Agency and the Higher Education Funding Council for England, with support from Cornwall Council.

http://biosciences.exeter.ac.uk/cec/

Media Contact

Jo Bowler
j.bowler@exeter.ac.uk
44-013-927-22062

 @uniofexeter

http://www.exeter.ac.uk 

Jo Bowler | EurekAlert!

Further reports about: CEC conservation ecology mongoose social groups wild animals

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>