Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild bees at Mount Kilimanjaro

21.01.2015

Why biologists set up coloured soup bowls on Kilimanjaro and how this helps them find out that bees still live at an altitude of 4,550 metres and other interesting facts: New findings in biodiversity research.

The detailed accounts Alexander von Humboldt (1769-1859) gave of his journeys already emphasised that biodiversity is not equally distributed on our planet. Whereas tropical rainforests exhibit a vast diversity in plant and animal species in a small area, moderate climate zones have less to offer with the variety of species decreasing towards the poles.


Coloured soup bowls used as bee traps on Mt. Kilimanjaro.

(Photo: Alice Claßen)

Why are the tropics so densely populated and the poles rather sparsely? Science has never been able to completely answer this question. To shed light on the issue, a team of the University of Würzburg's Biocenter has travelled to Mount Kilimanjaro in Tanzania, the highest free-standing mountain in the world (5,895 metres).

What makes Kilimanjaro interesting to research

What does Mount Kilimanjaro have to do with the biodiversity on our latitudes? "Quite a lot," says Professor Ingolf Steffan-Dewenter, head of the Würzburg Department of Animal Ecology and Tropical Biology: "When you climb a mountain, the temperature will drop with elevation at a rate of around six degrees Celsius per kilometre – that is about a thousand times faster than if you were moving from the equator towards the poles."

Other environmental factors that change only slowly along latitudes vary relatively quickly along differences in altitude – the productivity of ecosystems, for example. This makes high mountains virtual "experimental labs" that allow the factors determining biodiversity in our planet's climate zones to be studied at a small scale.

How to measure the diversity of wild bee species

The Würzburg scientists wanted to know which factors influence the diversity of wild bee species. Why wild bees of all species? "Wild bees are among the most important pollinators of our ecosystems. Their diversity in the tropics is still manageable for us. And their food resources, nectar and pollen, are defined quite clearly compared to other insects. This makes wild bees great subjects for study," bee expert Steffan-Dewenter explains.

The scientists used simple plastic soup bowls to determine the diversity of bee species at Mount Kilimanjaro. Sprayed with blue, yellow or white paint that reflects the light, the bowls attract bees which think they are flowers and fly right into the trap containing water and soap. The soap reduces the surface tension of the water so that the insects sink to the bottom of the trap.

"If you work in the tropics, the simplest methods are often the best," explains Andreas Hemp, an Africa specialist of the University of Bayreuth. "Expensive equipment cannot be left unattended, whereas painted bowls at best attract some curious schoolchildren."

Where the researchers set up the insect traps

The scientists installed the painted bowls at 60 study sites in total on Kilimanjaro three times in two years. Half of the sites were only accessible after hours of marching. The highest location was 4,550 metres above sea level, exactly at Mount Kilimanjaro's limit of vegetation.

"You tire more quickly at such heights," Alice Claßen, a doctoral candidate, recalls. "And what is more, the mean annual temperature up there is only about three degrees Celsius. The dry season was most challenging physically: on some days we had to carry the water for the traps up the mountain. This is only possible if you work in a team and with the help of great field assistants."

The painted bowls were left in their respective locations for 48 hours each. During that time, the researchers collected key data regarding temperature, precipitation, number of flowers and intensity of land use at the respective sites of study.

What the scientists found out

It was worth the effort: In the end, the research team successfully demonstrated that the biodiversity of bees declines continuously with increasing altitude. They were greatly surprised to find a specifically adapted species of apex-burrow bee (Lasioglossum, Halictidae) still living at an altitude of 4,550 metres.

So far biodiversity has been known to be regulated by resources and temperature. "The resources are like a cake," Marcell Peters, a Würzburg postdoc, explains: "The bigger the cake, the more individuals can feed on it and the bigger the populations that can be maintained. And the bigger the populations are, the smaller their risk of extinction is."

However, matters become more complicated when we look at the temperature. High temperatures as found in tropical zones increase the speed of speciation processes, for example, by increased rates of mutation or ecological mechanisms. But given the fact that Mount Kilimanjaro is rather young in geological terms, higher speciation rates there are insufficient to account for the whole pattern of biodiversity.

How the use of resources depends on temperature

The researcher demonstrated that it is actually the combination of temperature and resources that plays a major role: "We found temperature to have a significant impact on biodiversity which was regulated by an increase in the populations," Peters further. "Moreover, we were able to show that bees visit fewer flowers when temperatures are low than when they are high, even though flowers are abundant. Hence, temperature seems to regulate the accessibility of resources and is therefore more relevant than the availability of resources." Surprisingly, this mechanism has hardly been taken into account by previous explanation approaches.

What is true for wild bees should at least apply to other poikilotherms, too. But it is possible that the biodiversity of homoeothermic animals, too, which frequently feed on poikilotherms, is regulated by the temperature-dependent use of resources. Although these findings have not completely answered the question of which mechanisms are actually responsible for regulating biodiversity on Earth, they have enabled us to add another piece of the puzzle to the overall picture.

These research results have been produced within the scope of the research group "Kilimanjaro ecosystems under global change" funded by Deutsche Forschungsgemeinschaft (DFG); Professor Ingolf Steffan-Dewenter is the group's spokesman.

Classen, A., Peters, M. K., Kindeketa, W. J., Appelhans, T., Eardley, C. D., Gikungu, M. W., Hemp, A., Nauss, T. and Steffan‐Dewenter, I. (2015), Temperature versus resource constraints: which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Global Ecology and Biogeography. doi:10.1111/geb.12286, published online January 19, 2015.

Contact

Alice Claßen, Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, Phone +49 931 31-82793, alice.classen@uni-wuerzburg.de

Prof. Dr. Ingolf Steffan-Dewenter, Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, Phone +49 931 31-86947, ingolf.steffan-dewenter@uni-wuerzburg.de

Weitere Informationen:

https://www.kilimanjaro.biozentrum.uni-wuerzburg.de Link to the homepage of the DFG research group "Kilimanjaro ecosystems under global change"

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Biology Kilimanjaro Tropical Biology diversity ecology ecosystems flowers populations temperature tropics

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>