Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why is the immune system unable to combat HIV? Key factor identified

14.04.2016

An international research group with essential participation of the Paul-Ehrlich-Institut, has identified NLRX1, a cellular factor of the human cell that is indispensable to the replication of Human Immunodeficiency Virus (HIV-1). This factor plays a key role in attenuating the innate immune system towards HIV-1. Until now, the significance of NLRX1 for the replication of HIV-1 and the attenuation of the immune system was not known. The novel research finding will lead to new therapeutic approaches. The research results are reported in Cell Host Microbe in its oedition of 13.04.2016

HIV-1 uses human proteins (host proteins) for its own replication and prevents the human immune system from combating it successfully. Dr Renate König, head of the research group “Cellular Aspects of Pathogen Host Interactions” of the Paul-Ehrlich-Institut, and her colleagues have been studying this phenomenon for a long time, asking why the human immune system fails to fight HIV-1.


NLRX1 and HIV-1 infection a) NLRX1 attenuates immune reactions, thus enabling HIV replication. b) If NLRX1 is deactivated, the protective mechanisms can take effect and block HIV replication.

Source: PEI

To identify the underlying reason could help develop both enhancers for future efficacious vaccines and new immune-modulated HIV antivirals. The researchers have now reached one important milestone toward achieving this goal in an international research collaboration with Dr Jenny Ting, University of North Carolina at Chapel Hill, NC, USA, and Dr Sumit Chanda, Sanford-Burnham Prebys Medical Discovery Institute, San Diego, CA.

They have identified NLRX1 (nucleotide-binding oligomerization domain, leucine rich repeat containing X1) as an important factor. This protein belongs to the NOD-like receptor family (NOD-like receptors, NLR) of pattern recognition receptors. It acts as a fine-tuning regulator, which can deactivate the early warning system of the immune system. In a high-throughput procedure, NLRX1 had already been identified by König and colleagues as one out of 295 potential proteins important for HIV-1 replication [1]. The fact that it does play a central role, and which mechanisms it uses, has so far been unknown.

König and her international research partners provided evidence that NLRX1 enables HIV-1 infection in immune cells such as macrophages and dendritic cells (cells of the human immune system). The research team was able to show that NLRX1 attenuates the innate immune system by binding STING (stimulator of interferon genes). STING, an important factor in combating viruses, acts as a mediator. After (virus) DNA has been sensed by the receptor cGAS in the cytoplasm of the cells, STING binds to the factor TBK1 (TANK-binding kinase 1) and activates it.

Subsequently, type-I interferon and pro-inflammatory cytokines are produced. Moreover, the binding of STING to TBK1 leads to the activation of interferon-stimulating genes (ISG), which prevent the insertion of virus DNA into the nucleus of the cell, thus inhibiting its replication. These defense mechanisms are deactivated when NLRX1 binds to STING. By silencing NLRX, the researchers were able to show that this protein does indeed play a key role, because the cytokine response was considerably increased, thus inhibiting import of the virus DNA into the nucleus.

Therefore, NLRX1 is an attractive target structure for the development of therapies for the treatment of HIV-1. Advanced therapeutics, which block NLRX1 could also be used to act as adjuvants enhancing the efficacy of vaccines. “We believe that our research results can speed up the development of such active substances against HIV-1, which contribute to enhancing the innate immune response to HIV-1”, said König, explaining the significance of these research results.

Original Publication

Guo H, König R, Deng M, Riess M, Mo J, Zhang L, Petrucelli A, Yoh SM, Barefood B, Ventevogel M, Sempowski GD, Zhang A, Colberg-Poley AM, Feng H, Lemon SM, Liu Y, Zhang Y, Wen H, Zhang Z, Damania B, Tsao LC, Wang Q, Su L, Duncan JA, Chanda SK, Ting JPY (2016): NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses.
Cell Host Microbe. Volume 19, Issue 4, p515–528
DOI: http://dx.doi.org/10.1016/j.chom.2016.03.001

[1] König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell J, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth A, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008): Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
Cell 135: 49-60.

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(16)30063-4 - Abstract of the publication
http://www.ncbi.nlm.nih.gov/pubmed/18854154 - Abstract of the Cell-Paper, mentioned in the press release
http://www.pei.de/EN/information/journalists-press/press-releases/2016/10-immune... - This press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>