Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why is the immune system unable to combat HIV? Key factor identified

14.04.2016

An international research group with essential participation of the Paul-Ehrlich-Institut, has identified NLRX1, a cellular factor of the human cell that is indispensable to the replication of Human Immunodeficiency Virus (HIV-1). This factor plays a key role in attenuating the innate immune system towards HIV-1. Until now, the significance of NLRX1 for the replication of HIV-1 and the attenuation of the immune system was not known. The novel research finding will lead to new therapeutic approaches. The research results are reported in Cell Host Microbe in its oedition of 13.04.2016

HIV-1 uses human proteins (host proteins) for its own replication and prevents the human immune system from combating it successfully. Dr Renate König, head of the research group “Cellular Aspects of Pathogen Host Interactions” of the Paul-Ehrlich-Institut, and her colleagues have been studying this phenomenon for a long time, asking why the human immune system fails to fight HIV-1.


NLRX1 and HIV-1 infection a) NLRX1 attenuates immune reactions, thus enabling HIV replication. b) If NLRX1 is deactivated, the protective mechanisms can take effect and block HIV replication.

Source: PEI

To identify the underlying reason could help develop both enhancers for future efficacious vaccines and new immune-modulated HIV antivirals. The researchers have now reached one important milestone toward achieving this goal in an international research collaboration with Dr Jenny Ting, University of North Carolina at Chapel Hill, NC, USA, and Dr Sumit Chanda, Sanford-Burnham Prebys Medical Discovery Institute, San Diego, CA.

They have identified NLRX1 (nucleotide-binding oligomerization domain, leucine rich repeat containing X1) as an important factor. This protein belongs to the NOD-like receptor family (NOD-like receptors, NLR) of pattern recognition receptors. It acts as a fine-tuning regulator, which can deactivate the early warning system of the immune system. In a high-throughput procedure, NLRX1 had already been identified by König and colleagues as one out of 295 potential proteins important for HIV-1 replication [1]. The fact that it does play a central role, and which mechanisms it uses, has so far been unknown.

König and her international research partners provided evidence that NLRX1 enables HIV-1 infection in immune cells such as macrophages and dendritic cells (cells of the human immune system). The research team was able to show that NLRX1 attenuates the innate immune system by binding STING (stimulator of interferon genes). STING, an important factor in combating viruses, acts as a mediator. After (virus) DNA has been sensed by the receptor cGAS in the cytoplasm of the cells, STING binds to the factor TBK1 (TANK-binding kinase 1) and activates it.

Subsequently, type-I interferon and pro-inflammatory cytokines are produced. Moreover, the binding of STING to TBK1 leads to the activation of interferon-stimulating genes (ISG), which prevent the insertion of virus DNA into the nucleus of the cell, thus inhibiting its replication. These defense mechanisms are deactivated when NLRX1 binds to STING. By silencing NLRX, the researchers were able to show that this protein does indeed play a key role, because the cytokine response was considerably increased, thus inhibiting import of the virus DNA into the nucleus.

Therefore, NLRX1 is an attractive target structure for the development of therapies for the treatment of HIV-1. Advanced therapeutics, which block NLRX1 could also be used to act as adjuvants enhancing the efficacy of vaccines. “We believe that our research results can speed up the development of such active substances against HIV-1, which contribute to enhancing the innate immune response to HIV-1”, said König, explaining the significance of these research results.

Original Publication

Guo H, König R, Deng M, Riess M, Mo J, Zhang L, Petrucelli A, Yoh SM, Barefood B, Ventevogel M, Sempowski GD, Zhang A, Colberg-Poley AM, Feng H, Lemon SM, Liu Y, Zhang Y, Wen H, Zhang Z, Damania B, Tsao LC, Wang Q, Su L, Duncan JA, Chanda SK, Ting JPY (2016): NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses.
Cell Host Microbe. Volume 19, Issue 4, p515–528
DOI: http://dx.doi.org/10.1016/j.chom.2016.03.001

[1] König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell J, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth A, Miraglia LJ, Bushman FD, Young JA, Chanda SK (2008): Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
Cell 135: 49-60.

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(16)30063-4 - Abstract of the publication
http://www.ncbi.nlm.nih.gov/pubmed/18854154 - Abstract of the Cell-Paper, mentioned in the press release
http://www.pei.de/EN/information/journalists-press/press-releases/2016/10-immune... - This press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>