Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where alien plants take root

20.08.2015

Biologists compiled a global overview of naturalisation and spread of alien plant species

For the first time, a scientific survey provides a global overview of the naturalisation and distribution of plants on continents outside their native ranges.


Mosaic of Planet Earth: A total of 367 images representing 360 introduced, naturalized, or invasive plant species worldwide. This mosaic was constructed by Daniel Nickrent using EasyMoza software.

Daniel Nickrent


Giant hogweed (Heracleum mantegazzianum) is one of the most prominent invasive plants in Europe, with invasive stands covering hectars of abandoned pastures.

Jan Pergl

Under the leadership of Professor Mark van Kleunen at the University of Konstanz, biologists from the University of Vienna, The Czech Academy of Sciences, the German Centre for Integrative Biodiversity Research (iDiv) and the University of Göttingen analysed data for 481 mainland areas and 362 islands in collaboration with a further 33 research institutions all over the world.

The areas surveyed represent around 83 percent of the Earth’s land surface. According to the researchers’ survey, humankind has been responsible for the establishment of at least 13,168 plant species – approximately 3.9% of the flora worldwide – outside their natural ranges.

North America has become home to the largest number of alien plant species, as almost 6,000 have naturalised in this continent, followed by Europe with more than 4,000. Compared to their area, the Pacific Islands had the most naturalised plant species, indicating that islands are easier to invade than mainland areas.

Regions in the Northern Hemisphere are the largest “donors” of naturalised species to other parts of the world, with Europe and non-tropical Asia in the lead. The results of this research were published in the current issue of the prestigious scientific journal Nature.

In the course of the four-year research project, the biologists collected regional lists of naturalised plants from all parts of the world, and compiled them in the global databank called GloNAF - Global Naturalized Alien Flora.

“The greatest challenge was to acquire data from understudied regions of the world, from where there was no or very scarce information on alien plants distributions. Up to now, biologists inferred global patterns from rather limited data sets, and much of what we knew about plant invasions was speculation to some extent; now for the first time, we can carry out rigorous tests of those assumptions, and this is what makes our study unique”, explains Professor Petr Pyšek of The Czech Academy of Sciences, the senior author of the study. “Another great challenge was to standardise the names of plant species. There are large regional discrepancies in the names used for the same plant species in different countries”, the lead author Mark van Kleunen reports.

The survey was based on the statistics for “naturalised” (established) plants. This category of plants includes all species that grow and reproduce in the wild outside their original geographic range. These figures are not exactly the same as the statistics for so-called invasive plant species, those that rapidly spread in their non-native ranges and many of them noticeably impact their new environment as well as other species.

This research is driven by the question: Why are some plant species more successful in becoming naturalised than others? Mark van Kleunen explains: “Our survey is purely descriptive to start with: it details where alien plant species have spread worldwide and where they come from. With the GloNAF database that we built, we can now begin to ask questions about the biological mechanisms driving these processes”.

“This is particularly challenging because questions such as what contributes to the spread of alien plant species, which plant characteristics foster their spread into different environments, and how important are evolutionary relationships between the naturalised and native plants, are still poorly understood at the global scale,” adds Marten Winter of the iDiv Centre in Leipzig, and one of the founding members of the GloNAF consortium. “Our data can now also be used to make predictions about which species could become dominant in which regions, which would be knowledge of great importance for the management of biological invasions and nature conservation”, Mark van Kleunen concludes.

Original publication:
van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Pyšek P et al. (2015) Global exchange and accumulation of non-native plants. Nature doi:10.1038/nature14910.

Note to editors:
You can download photos here:

Mosaic of Planet Earth: http://pi.uni.kn/2015/081-Mosaik.jpg
Caption: The mosaic was constructed by Daniel Nickrent using EasyMoza software based on a public domain photo of Planet Earth. A total of 367 images representing 360 introduced, naturalized, or invasive plant species worldwide were used for the mosaic tiles.

Giant hogweed: http://pi.uni.kn/2015/081-Riesen-Baerenklau.jpg
Caption: Giant hogweed (Heracleum mantegazzianum) is one of the most prominent invasive plants in Europe, with invasive stands covering hectars of abandoned pastures. Photo: Jan Pergl

Gorse: http://pi.uni.kn/2015/081-Stechginster.jpg
Caption: Gorse (Ulex europaeus) large scale invasion at Hinewai preserve in Banks Peninsula, New Zealand. Gorse was introduced from Europe in the early stages of the European settlement. Millions of dollars are spent on the control. Photo: Pieter Pelser

Contact:
University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Professor Mark van Kleunen
University of Konstanz
Department of Biology
Universitaetsstrasse 10
78464 Konstanz, GERMANY
Phone: +49 7531 88-2997
E-mail: Mark.vanKleunen@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

Further reports about: alien plants invasions invasive invasive plant plant species species

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>