Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Evil Assumes Power: On the Dominance of Stem Cell Mutations in Age

05.06.2015

Aging is characterized by a decrease in regenerative capacity and organ maintenance as well as an increasing risk of cancer which coincide with mutations in stem and progenitor cells. In a working paper, researchers of Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena/Germany, University of Glasgow, UK, and Buck Institute for Research on Aging, USA, summarize and contrast international research results on the various cell-intrinsic mechanisms that lead to a clonal dominance of mutant stem and progenitor cells in aging tissues. The review will be published in the journal Cell Stem Cell on June 4th.

The incidence of tissue dysfunction, diseases and many types of cancer exponentially increases above the age of 45, showing a growing number of mutant stem or progenitor clones in the hematopoietic system, and the intestinal epithelium.

New research results indicate that an increasing number of mutations in tissue stem cells are the main reason for carcinogenesis in age, starting years before the disease occurs. However, the mechanisms that initiate stem cell mutations and lead to their clonal dominance are poorly understood.

Researchers from renowned age and cancer research institutes in Jena/Germany (Fritz Lipmann Institute (FLI)), Glasgow/UK (Beatson Institute for Cancer Research) and Novato/USA (Buck Institute for Research on Aging) now compiled and presented existing research results in order to show new approaches for the explanation of this dominance.

In general, the review shows that an increase of clonal dominance of mutant stem cells depends on the kind of tissue, the organism type as well as on which mutations occur and which pathways are affected. For example, the effects of replication stress and telomere shortening in the human hematopoietic system are stronger than in the intestinal epithelium.

In mice, there is no dependency between the clonal dominance of mural mutant intestine stem cells and the mice’s growing age. Further, the clonal dominance of mutant stem cells can be context dependent, e.g. occurs in the context of intestinal inflammation but not in the non-inflamed intestine. It’s a challenge for prospective research to find tissue-specific antecedents and consequences of cell mutations, especially with regard to the increasing dominance of mutations during aging.

Furthermore, the research experts highlight the loss of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.

“There’s a wide variety of reasons for the clonal dominance of mutant stem cells, and research is still in the beginning”, Prof. Dr. K. Lenhard Rudolph, Scientific Director of FLI, resumes. “But we have to attach a high importance to this new research field regarding the development of therapies that aim to improve health in age. If we succeed to identify the antecedents of mutant stem cells’ dominance in age, these processes can be targeted and diminished, thus leading to a lower risk of cancer and disease in our later years.”

Publication.
Adams PD, Jasper H, Rudolph KL. Aging Induced Stem Cell Mutations as Drivers for Disease and Cancer. Cell Stem Cell 2015, doi: http://dx.doi.org/10.1016/j.stem.2015.05.002.

Contact.
Dr. Evelyn Kästner
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: +49 3641-656373, Fax: +49 3641-656351, E-Mail: presse@fli-leibniz.de


Background Information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>