Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Evil Assumes Power: On the Dominance of Stem Cell Mutations in Age

05.06.2015

Aging is characterized by a decrease in regenerative capacity and organ maintenance as well as an increasing risk of cancer which coincide with mutations in stem and progenitor cells. In a working paper, researchers of Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena/Germany, University of Glasgow, UK, and Buck Institute for Research on Aging, USA, summarize and contrast international research results on the various cell-intrinsic mechanisms that lead to a clonal dominance of mutant stem and progenitor cells in aging tissues. The review will be published in the journal Cell Stem Cell on June 4th.

The incidence of tissue dysfunction, diseases and many types of cancer exponentially increases above the age of 45, showing a growing number of mutant stem or progenitor clones in the hematopoietic system, and the intestinal epithelium.

New research results indicate that an increasing number of mutations in tissue stem cells are the main reason for carcinogenesis in age, starting years before the disease occurs. However, the mechanisms that initiate stem cell mutations and lead to their clonal dominance are poorly understood.

Researchers from renowned age and cancer research institutes in Jena/Germany (Fritz Lipmann Institute (FLI)), Glasgow/UK (Beatson Institute for Cancer Research) and Novato/USA (Buck Institute for Research on Aging) now compiled and presented existing research results in order to show new approaches for the explanation of this dominance.

In general, the review shows that an increase of clonal dominance of mutant stem cells depends on the kind of tissue, the organism type as well as on which mutations occur and which pathways are affected. For example, the effects of replication stress and telomere shortening in the human hematopoietic system are stronger than in the intestinal epithelium.

In mice, there is no dependency between the clonal dominance of mural mutant intestine stem cells and the mice’s growing age. Further, the clonal dominance of mutant stem cells can be context dependent, e.g. occurs in the context of intestinal inflammation but not in the non-inflamed intestine. It’s a challenge for prospective research to find tissue-specific antecedents and consequences of cell mutations, especially with regard to the increasing dominance of mutations during aging.

Furthermore, the research experts highlight the loss of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.

“There’s a wide variety of reasons for the clonal dominance of mutant stem cells, and research is still in the beginning”, Prof. Dr. K. Lenhard Rudolph, Scientific Director of FLI, resumes. “But we have to attach a high importance to this new research field regarding the development of therapies that aim to improve health in age. If we succeed to identify the antecedents of mutant stem cells’ dominance in age, these processes can be targeted and diminished, thus leading to a lower risk of cancer and disease in our later years.”

Publication.
Adams PD, Jasper H, Rudolph KL. Aging Induced Stem Cell Mutations as Drivers for Disease and Cancer. Cell Stem Cell 2015, doi: http://dx.doi.org/10.1016/j.stem.2015.05.002.

Contact.
Dr. Evelyn Kästner
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: +49 3641-656373, Fax: +49 3641-656351, E-Mail: presse@fli-leibniz.de


Background Information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>