Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Evil Assumes Power: On the Dominance of Stem Cell Mutations in Age

05.06.2015

Aging is characterized by a decrease in regenerative capacity and organ maintenance as well as an increasing risk of cancer which coincide with mutations in stem and progenitor cells. In a working paper, researchers of Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena/Germany, University of Glasgow, UK, and Buck Institute for Research on Aging, USA, summarize and contrast international research results on the various cell-intrinsic mechanisms that lead to a clonal dominance of mutant stem and progenitor cells in aging tissues. The review will be published in the journal Cell Stem Cell on June 4th.

The incidence of tissue dysfunction, diseases and many types of cancer exponentially increases above the age of 45, showing a growing number of mutant stem or progenitor clones in the hematopoietic system, and the intestinal epithelium.

New research results indicate that an increasing number of mutations in tissue stem cells are the main reason for carcinogenesis in age, starting years before the disease occurs. However, the mechanisms that initiate stem cell mutations and lead to their clonal dominance are poorly understood.

Researchers from renowned age and cancer research institutes in Jena/Germany (Fritz Lipmann Institute (FLI)), Glasgow/UK (Beatson Institute for Cancer Research) and Novato/USA (Buck Institute for Research on Aging) now compiled and presented existing research results in order to show new approaches for the explanation of this dominance.

In general, the review shows that an increase of clonal dominance of mutant stem cells depends on the kind of tissue, the organism type as well as on which mutations occur and which pathways are affected. For example, the effects of replication stress and telomere shortening in the human hematopoietic system are stronger than in the intestinal epithelium.

In mice, there is no dependency between the clonal dominance of mural mutant intestine stem cells and the mice’s growing age. Further, the clonal dominance of mutant stem cells can be context dependent, e.g. occurs in the context of intestinal inflammation but not in the non-inflamed intestine. It’s a challenge for prospective research to find tissue-specific antecedents and consequences of cell mutations, especially with regard to the increasing dominance of mutations during aging.

Furthermore, the research experts highlight the loss of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.

“There’s a wide variety of reasons for the clonal dominance of mutant stem cells, and research is still in the beginning”, Prof. Dr. K. Lenhard Rudolph, Scientific Director of FLI, resumes. “But we have to attach a high importance to this new research field regarding the development of therapies that aim to improve health in age. If we succeed to identify the antecedents of mutant stem cells’ dominance in age, these processes can be targeted and diminished, thus leading to a lower risk of cancer and disease in our later years.”

Publication.
Adams PD, Jasper H, Rudolph KL. Aging Induced Stem Cell Mutations as Drivers for Disease and Cancer. Cell Stem Cell 2015, doi: http://dx.doi.org/10.1016/j.stem.2015.05.002.

Contact.
Dr. Evelyn Kästner
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: +49 3641-656373, Fax: +49 3641-656351, E-Mail: presse@fli-leibniz.de


Background Information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>