Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When peaceful coexistence turns into competition - Impacts of climate change on the natural world

06.04.2017

Biologists agree that climate change causes not only more heat waves and flooding, but also reduces biological diversity. The specific processes that ultimately cause species to go extinct have, however, been little studied so far. Scientists at the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have now discovered one of the possible causes for species loss due to climate change thanks to an intriguing experiment.

When temperatures rise, the complex relationships between species are changing. Prey species not only become stronger competitors for scarce resources, but also more preyed upon. These findings have now been published in the renowned journal "Proceedings of the Royal Society B".


To establish micro ecosystems, the researchers filled Petri dishes with litter and added the animals.

Photo: Madhav P. Thakur


The predatory mites, Hypo aculifer, under the microscope.

Photo: Tom Künne

To find out how rising temperatures could affect species diversity, biologists from the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have developed a simple experiment: they covered the bottom of different Petri dishes with litter material, then put in two species of springtails, that is, arthropods only a few millimetres in size, and then added mites feeding on springtails.

Subsequently, for some of the Petri dishes they increased the ambient temperature from originally 13.5°C to 18.5°C and for some other Petri dishes to 23.5°C. In those Petri dishes, the temperatures were hence five, respectively ten degrees higher than the conditions to which the animals had been exposed to in long-term cultures over years.

This created simplified miniature ecosystems under climate change conditions, in which the springtail species that peacefully coexist in the wild represented the prey, and the mites represented the predators. For two months, the researchers then observed how the interactions between the three species would develop with different temperatures.

Madhav P. Thakur, the lead author of the study, explains the initial hypothesis of the Leipzig scientists: “We had actually been expecting that the smaller of the two springtail species would cope better with higher temperatures than the larger species. Their need for food is generally lower, so that it should increase less sharply under the new conditions". The actual results took the researchers by surprise: After two months, the smaller springtail species had completely disappeared in the warmer Petri dishes, whereas the larger species had managed to survive.

The study authors suspect that the smaller species was doomed due to two reasons : On the one hand, it was under a higher risk of being eaten. At higher temperatures, the predator’s need for food also increases due to the generally elevated metabolism. Smaller prey are probably easier pickings than larger animals, because it is harder for them to escape from predators.

On the other hand, the members of the smaller species were clearly and significantly less successful at adapting to the altered conditions – even though it is generally advantageous at higher temperatures to have a small body size. "This apparent paradox could be explained by the fact that the smaller springtail species was less able to acclimate to warmer environments, that is, to adapt its metabolism to the higher temperature, and simultaneously suffered a heavy predation. In contrast, the larger prey species could cope better with the new conditions and also more successfully escaped predation .” says Thakur, who is a scientist at the research centre iDiv and the Leipzig University.

If these findings were extrapolated to the natural world, this could mean that in the future some animal species will not only be burdened by increasing energy needs through rising temperatures, but will also be under threat due to the changing interactions between species. Thus, there is not only an increased competition for scarce resources among species on the same tier of the food chain, but also a higher probability of being eaten by predators as climate continues to warm.

"This study once again demonstrates how little we understand about and can predict the complex interactions between species under future environmental conditions. Further studies with more complex communities and various model systems are urgently required here, to generate a comprehensive understanding", believes Prof Dr Nico Eisenhauer, the senior author of the study, who is a group leader at the research centre iDiv and Professor of Experimental Interaction Ecology at the Leipzig University.

The scientists had deliberately opted for using springtails in their study. These animals are not only easy to keep in the laboratory, but also play a crucial role in nature as decomposers of dead animal and plant material. If their species richness decreases due to climate change, some of their functions could be lost, and many processes within the ecosystems might unravel.

Verena Müller

Original study:
Madhav P. Thakur, Tom Künne, John N. Griffin, Nico Eisenhauer (2017) Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proc. R. Soc. B 2017 284 20162570; DOI: 10.1098/rspb.2016.2570


Further information:

Prof Dr Nico Eisenhauer
Head of the research group Experimental Interaction Ecology at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Professor at Leipzig University

Tel. +49 341 9733167

Dr Madhav Thakur
Postdoctoral researcher at the research group Experimental Interaction Ecology at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and at Leipzig University

Dr Tabea Turrini
Department Media and Communications at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Tel. +49 341 9733106

Weitere Informationen:

https://www.idiv.de/groups_and_people/employees/details/eshow/eisenhauer-nico.ht...
http://rspb.royalsocietypublishing.org/content/284/1851/20162570
https://portal.idiv.de/owncloud/index.php/s/LiuX9iTNUqrCVGw

Susann Huster | Universität Leipzig

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>