Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When peaceful coexistence turns into competition - Impacts of climate change on the natural world

06.04.2017

Biologists agree that climate change causes not only more heat waves and flooding, but also reduces biological diversity. The specific processes that ultimately cause species to go extinct have, however, been little studied so far. Scientists at the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have now discovered one of the possible causes for species loss due to climate change thanks to an intriguing experiment.

When temperatures rise, the complex relationships between species are changing. Prey species not only become stronger competitors for scarce resources, but also more preyed upon. These findings have now been published in the renowned journal "Proceedings of the Royal Society B".


To establish micro ecosystems, the researchers filled Petri dishes with litter and added the animals.

Photo: Madhav P. Thakur


The predatory mites, Hypo aculifer, under the microscope.

Photo: Tom Künne

To find out how rising temperatures could affect species diversity, biologists from the German Centre for Integrative Biodiversity Research (iDiv) and the Leipzig University have developed a simple experiment: they covered the bottom of different Petri dishes with litter material, then put in two species of springtails, that is, arthropods only a few millimetres in size, and then added mites feeding on springtails.

Subsequently, for some of the Petri dishes they increased the ambient temperature from originally 13.5°C to 18.5°C and for some other Petri dishes to 23.5°C. In those Petri dishes, the temperatures were hence five, respectively ten degrees higher than the conditions to which the animals had been exposed to in long-term cultures over years.

This created simplified miniature ecosystems under climate change conditions, in which the springtail species that peacefully coexist in the wild represented the prey, and the mites represented the predators. For two months, the researchers then observed how the interactions between the three species would develop with different temperatures.

Madhav P. Thakur, the lead author of the study, explains the initial hypothesis of the Leipzig scientists: “We had actually been expecting that the smaller of the two springtail species would cope better with higher temperatures than the larger species. Their need for food is generally lower, so that it should increase less sharply under the new conditions". The actual results took the researchers by surprise: After two months, the smaller springtail species had completely disappeared in the warmer Petri dishes, whereas the larger species had managed to survive.

The study authors suspect that the smaller species was doomed due to two reasons : On the one hand, it was under a higher risk of being eaten. At higher temperatures, the predator’s need for food also increases due to the generally elevated metabolism. Smaller prey are probably easier pickings than larger animals, because it is harder for them to escape from predators.

On the other hand, the members of the smaller species were clearly and significantly less successful at adapting to the altered conditions – even though it is generally advantageous at higher temperatures to have a small body size. "This apparent paradox could be explained by the fact that the smaller springtail species was less able to acclimate to warmer environments, that is, to adapt its metabolism to the higher temperature, and simultaneously suffered a heavy predation. In contrast, the larger prey species could cope better with the new conditions and also more successfully escaped predation .” says Thakur, who is a scientist at the research centre iDiv and the Leipzig University.

If these findings were extrapolated to the natural world, this could mean that in the future some animal species will not only be burdened by increasing energy needs through rising temperatures, but will also be under threat due to the changing interactions between species. Thus, there is not only an increased competition for scarce resources among species on the same tier of the food chain, but also a higher probability of being eaten by predators as climate continues to warm.

"This study once again demonstrates how little we understand about and can predict the complex interactions between species under future environmental conditions. Further studies with more complex communities and various model systems are urgently required here, to generate a comprehensive understanding", believes Prof Dr Nico Eisenhauer, the senior author of the study, who is a group leader at the research centre iDiv and Professor of Experimental Interaction Ecology at the Leipzig University.

The scientists had deliberately opted for using springtails in their study. These animals are not only easy to keep in the laboratory, but also play a crucial role in nature as decomposers of dead animal and plant material. If their species richness decreases due to climate change, some of their functions could be lost, and many processes within the ecosystems might unravel.

Verena Müller

Original study:
Madhav P. Thakur, Tom Künne, John N. Griffin, Nico Eisenhauer (2017) Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proc. R. Soc. B 2017 284 20162570; DOI: 10.1098/rspb.2016.2570


Further information:

Prof Dr Nico Eisenhauer
Head of the research group Experimental Interaction Ecology at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and Professor at Leipzig University

Tel. +49 341 9733167

Dr Madhav Thakur
Postdoctoral researcher at the research group Experimental Interaction Ecology at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and at Leipzig University

Dr Tabea Turrini
Department Media and Communications at the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Tel. +49 341 9733106

Weitere Informationen:

https://www.idiv.de/groups_and_people/employees/details/eshow/eisenhauer-nico.ht...
http://rspb.royalsocietypublishing.org/content/284/1851/20162570
https://portal.idiv.de/owncloud/index.php/s/LiuX9iTNUqrCVGw

Susann Huster | Universität Leipzig

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>