Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Food Alters Gene Function

01.02.2016

Maternal Diet Influences the Fat and Glucose Metabolism of Offspring through Epigenetic Alterations

As a study on mice performed under the direction of the German Institute of Human Nutrition (DIfE) has now shown, a high-fat diet during pregnancy and lactation leads to epigenetic* changes in the offspring.


Epigenetic Mechanisms

pigurdesign/DIfE

These changes affect metabolic pathways that are regulated by the gut hormone GIP**, whereby the adult offspring are more susceptible to obesity and insulin resistance, the precursor to type 2 diabetes. Similar mechanisms cannot be ruled out in humans, according to Andreas F. H. Pfeiffer, head of the Department of Clinical Nutrition at DIfE.

The nutritional study is an interdisciplinary cooperation project of the German Center for Diabetes Research (DZD), in which in addition to DIfE scientists, researchers of Helmholtz Zentrum München were also involved.

The research team led by Andreas F. H. Pfeiffer and the lead authors Michael Kruse and Farnaz Keyhani-Nejad recently published the study results in the journal Diabetes (Kruse et al., 2016; 65:1-11; DOI: 10.2337/db15-0478 http://www.ncbi.nlm.nih.gov/pubmed/26631738).

As scientists throughout the world observe, children of obese mothers have a higher risk of obesity and metabolic disorders. Recent findings suggest that diet-related epigenetic effects may also play a causal role in this. Since humans and mice are genetically very similar, many scientists use mouse models to study such associations under controlled conditions. Such studies on humans are not possible.

This study focused on the epigenetic effects on the GIP-regulated metabolic pathways that are triggered by the maternal diet during pregnancy and lactation. GIP is a hormone that the gut releases after food intake and which stimulates the secretion of insulin from the pancreas.

It influences the metabolism of fat cells and fat oxidation in skeletal muscles and as anabolic hormone promotes the build-up of body mass. These effects are mediated by the GIP via the GIP receptor. If this receptor is lacking as in the Gipr-/- mouse, the hormone can no longer exert its natural effect, and the animals are normally protected from obesity and insulin resistance.

Since the Gipr-/- mouse model is well suited for the study of GIP-regulated metabolic pathways, the researchers used this mouse strain for their study. The wild-type strain of the mouse model served as control.

First, the researchers divided the mouse mothers into three groups, who were fed different chow during pregnancy and lactation:
• Group 1: Gipr-/- mice who received a high-fat diet
• Group 2: Gipr-/- mice who received regular chow
• Group 3: Wild-type mice with intact GIP receptor, who received regular chow
After weaning, all offspring of the three groups were fed normal chow for 22 weeks followed by a high-fat diet for an additional 20 weeks.

As the scientists observed, the adult offspring of groups 1 and 3 gained a significant amount of fat mass during the 20-week high-fat diet although they ate less than the offspring of group 2. They also had heightened levels of cholesterol, glucose, and insulin in the blood.

In addition, they exhibited increased adipose tissue inflammation and enlarged fat cells and oxidized less fat in their muscles. Furthermore, the researchers found that the activity of different genes was altered in group 1 and 3 in comparison to group 2. These genes play a role in fat oxidation in muscles and in inflammatory processes in adipose tissue or are involved in the regulation of energy consumption by the brain.

“The altered gene activity could partially be traced back to DNA methylation***, that is, epigenetic changes,” said Pfeiffer. “Our results indicate that the GIP also plays a role in energy consumption, which is controlled by the brain, probably indirectly by reducing the insulin sensitivity of the hypothalamus,” the endocrinologist added. This is an entirely new finding. It remains to be seen to what extent these results can be applied to humans. More research on this topic is needed. However, it is clear that diet not only has a direct influence on the individual, but also may affect the offspring.


Background Information:

* Epigenetics is a relatively young field of research. It investigates altered gene functions that are not due to a change in the DNA sequence, but may nevertheless be inherited. Recent studies have increasingly suggested that diet as an environmental factor can lastingly affect gene activity, e.g. through chemical alteration (methylation) of the DNA nucleotides.

** GIP: Gastric inhibitory polypeptide

*** Explanations for the figure:
DNA methylations occur when methyl groups bind to the DNA. These can either activate or inactivate genes.
Nucleosome: Eight histone proteins form the core of a nucleosome, around which 147 base pairs of a DNA strand are wound.
Histone tail: The tails of the histone protrude from the nucleosome and can be modified by epigenetic factors. Thus, the binding of the DNA to the corresponding nucleosome is changed, so that the DNA, for example, is accessible to transcription enzymes and a specific gene is activated.
Epigenetic factors alter histone tails e.g. by transferring methyl or acetyl groups to lysine side chains. This can hinder or facilitate the activation of a gene. The direct methylation of the DNA permanently changes gene expression when it occurs in the control regions of genes (so-called CpG islets), which are made accessible through the modification of the histones.

The German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE) is a member of the Leibniz Association. It investigates the causes of diet-related diseases in order to develop new strategies for prevention and therapy and to provide dietary recommendations. Its research focus includes the causes and consequences of the metabolic syndrome, which is a combination of obesity, high blood pressure, insulin resistance and lipid metabolism disorder, the role of diet in healthy aging, and the biological basis of food choices and eating habits. More information at www.dife.de. The DIfE is a partner of the German Center for Diabetes Research (DZD), which was founded in 2009 and has since been funded by the BMBF. More information on the DZD can be found at http://www.dzd-ev.de.

The Leibniz Association is a network of 88 institutions that conduct applied basic research and provide scientific infrastructure. Leibniz institutes currently employ about 18,100 people – among them 9,200 scientists – with a total annual budget of nearly 1.64 billion euros. The Leibniz Association is characterized by the diversity of the topics and disciplines focused on at its institutions. The research museums of the Leibniz Association preserve and explore the natural and cultural heritage and are showcases of research, places of learning and fascination for science. More information at http://www.leibniz-gemeinschaft.de.

Contact:

Prof. Dr. Andreas F.H. Pfeiffer
Department of Clinical Nutrition
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Germany
phone: +49 (0)33200 88-2771
phone: +49 (0)30 450514 422
e-mail: afhp@dife.de
e-mail: afhp@charite.de


Dr. Michael Kruse
Practice for General Medicine
Hahler Str. 32
32427 Minden
Germany
phone: +49 (0)571 24000
e-mail: mikruse@aol.com
e-mail: michael.kruse@dife.de (until July 2016)
Until 2015 Dr. Kruse was employed in the department of Prof. Pfeiffer.

Dr. Farnaz Keyhani-Nejad
Department of Clinical Nutrition
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
Arthur-Scheunert-Allee 114-116
14558 Nuthetal
Germany
e-mail: Keyhani-Nejad.Farnaz@dife.de

Press Contact:

Dr. Gisela Olias
Head of Press and Public Relations
German Institute of Human Nutrition
Potsdam-Rehbruecke (DIfE)
phone: +49 (0)33200 88-2278/-2335
e-mail: olias@dife.de
or presse@dife.de
http://www.dife.de

Weitere Informationen:

http://www.dife.de/forschung/abteilungen/kurzprofil.php?abt=KLE&lang=en Department of Clinical Nutrition

Dr. Gisela Olias | idw - Informationsdienst Wissenschaft

Further reports about: DIfE DNA Nutrition epigenetic high-fat diet metabolic metabolic pathways

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>