Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When DNA Gets Sent to Time-Out

08.01.2015

New details revealed in the coordinated regulation of large stretches of DNA

Fast Facts:
• Directly inside the membrane of the cell’s nucleus is a meshwork of proteins called the lamina.
• Genes are turned off in large stretches of DNA that attach to the lamina.
• New work reveals what is needed to get DNA to stick, shedding light on how the body regulates its genes.


Reddy Lab, Johns Hopkins Medicine

In mouse cells, the YY1 protein binds to a segment of DNA (green), leading it to attach to the lamina (red) at the edge of the nucleus.

For a skin cell to do its job, it must turn on a completely different set of genes than a liver cell — and keep genes it doesn’t need switched off. One way of turning off large groups of genes at once is to send them to “time-out” at the edge of the nucleus, where they are kept quiet. New research from Johns Hopkins sheds light on how DNA gets sent to the nucleus’ far edge, a process critical to controlling genes and determining cell fate.

A report on the work appeared in the Jan. 5 issue of the Journal of Cell Biology.

“We discovered a DNA sequence and a specific set of protein tags that send DNA to the edge of the nucleus, where its genes get turned off,” says Karen Reddy, Ph.D., an assistant professor of biological chemistry at the Johns Hopkins University School of Medicine.

Picture the nucleus as a round room filled with double strands of DNA hanging in suspension as they are opened, closed, clipped, patched and read by proteins that come and go. At the edge of the nucleus, just inside its flexible walls, the lamina meshwork provides shape and support. But accumulating evidence from the past few years suggests that this meshwork is not just a structure, but is crucial to the cell’s ability to turn large segments of genes off in one fell swoop. It’s as though certain stretches of DNA feel a magnetic pull that keeps them clinging to the lamina in a state of “time-out,” inaccessible to the proteins that could be working on them.

This method of turning off entire segments of the genome is particularly useful during development, when each cell in the embryo takes on a different fate by making a different set of proteins, even though each contains the same set of genes. What was unknown is what marks a particular DNA segment to be sent to the lamina for some “quiet time.”

Reddy and her team began answering that question by comparing immature, embryonic, skinlike cells to mature immune system cells from mice. When they compared the segments of DNA clinging to the lamina in the two cell types, they found that differences occurred near genes that are used differently between the two. Additionally, the DNA regions that cling to the lamina were very consistent; there were no “grey areas” that were only sometimes associated with the lamina.

Next, the researchers chopped up the lamina-associated DNA segments and inserted individual pieces into the chromosomes of test cells, watching for the nearby chromosome segments to move to the lamina. They found that these segments were able to bind the protein YY1, and that YY1, when bound to a segment of DNA, was able to send the surrounding DNA to the lamina.

Reddy’s team also discovered two molecular tags that are needed for DNA to move to the lamina. The tags are found on the histone proteins that DNA coils around and are a classic form of “epigenetic regulation” — gene regulation that does not involve DNA sequence changes. It seems likely that YY1 is involved in summoning the proteins that attach the molecular tags to the histones. But whether YY1 has additional roles, like acting as a magnet to bring the DNA to the lamina, is unclear.

“This is the first time a specific combination of epigenetic modifications has been implicated in tethering DNA to the lamina,” says Reddy. “Now we have a lot of interesting questions to answer about how different types of cells use this mechanism to regulate different sets of genes.”

Other authors of the report include Jennifer Harr, Teresa Romeo Luperchio, Xianrong Wong, Erez Cohen and Sarah Wheelan of the Johns Hopkins University School of Medicine.

This work was supported by a grant from the National Institute of General Medical Sciences (1 R01 GM106024-01).

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

Further reports about: DNA DNA sequence Johns Hopkins YY1 fate genes molecular tags proteins

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>