Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Quails can teach us about the gait of Dinosaurs

09.12.2014

Motion scientists and zoologists of Jena University (Germany) study out the gait of birds

Dinosaurs did it. Human beings and monkey do it. And even birds do it. They walk on two legs. And although humans occupy a special position amongst mammals as they have two legs, the upright gait is not reserved only for man. In the course of evolution many animals have developed the bipedal gait – the ability to walk on two legs.


The motion scientists from Jena University had quails walking through a high speed X-ray installation and measured the power at work in their legs.

Photo: Jan-Peter Kasper/FSU


Dr. Emanuel Andrada from the University in Jena (Germany) analyzed the effect of birds posture on the movement of their legs and on their stability when they walk.

Photo: Jan-Peter Kasper/FSU

“Birds are moving forward on two legs as well, although they use a completely different technique from us humans,” Dr. Emanuel Andrada from the Friedrich Schiller University in Jena (Germany) says. Human beings keep their upper bodies generally in an upright position and the body’s center of gravity is directly above the legs.

The bodies of birds on the other hand are horizontally forward-facing, which appears to be awkward at first glance. Hence the motion scientist analyzed – together with colleagues – which effect this posture has on the movement of their legs and on their stability when they walk. The first detailed analysis of its kind has now been published by the scientists in the “Proceedings of the Royal Society B” (DOI: 10.1098/rspb.2014.1405).

To this end the team had quails walking through a high speed X-ray installation at varying speeds. While the installation monitored the movements of the animals meticulously, the scientists were able to measure the power at work in their legs. From this data, the Jena research team could develop a computer model of the whole motion sequence, which served to simulate and analyze the stability and the energy balance in connection to different gaits.

As it turned out, the birds use the so-called “grounded running” style when they move quickly – this is a running style in which at least one leg is always touching the ground. “Even when running quickly, short periods of flight phases occur only very rarely between the individual steps,” Prof. Dr. Reinhard Blickhan, Chair of Motion Science at Jena University explains. But this is extremely energy consuming for the animals because the body’s center of gravity lies distinctly in front of their legs – due to the horizontal posture. “The animals have to constantly balance out their own bodies in order to prevent falling forwards,” says Blickhan.

But this huge effort is worthwhile as the researchers discovered with the help of their computer model. “Unlike the legs of humans which gather energy like two coil springs and use it directly to move forwards, the bird’s legs work in addition like dampers or shock absorbers.” In order to prevent falling forwards or to permanently accelerate their movement, the birds practically have to brake all the time. This happens while the bird leg is working like a spring damper: Energy is hereby withdrawn from the leg, but the amount of energy is the same that was invested in the hip to stabilize the trunk via the turning moment. “This apparent wasting of energy is the price for a very stable posture during locomotion, especially on an uneven terrain,” Blickhan summarizes the result of this study.

After these newly presented results, the Jena researchers anticipate interesting times ahead. They also want to test the gait of other birds with the help of the computer model they developed. And the scientists even want to analyze the locomotion of dinosaurs – the direct forebears of today’s birds. “It is not clear yet how two-legged species like Allosaurus or Tyrannosaurus Rex really moved forward,” says Dr. Andrada. But it is assumed by now that they also ran with their upper bodies thrust forwards horizontally – due to biomechanical advantages.

Original-Publication:
Andrada E. et al.: Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion. Proceedings of the Royal Society B 2014, DOI: 10.1098/rspb.2014.1405

Contact:
Dr. Emanuel Andrada
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1, 07743 Jena
Germany
Phone: +0049 (0)3641 949174
Email: emanuel.andrada[at]uni-jena.de


Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: animals computer model gravity leg locomotion movement own bodies upright walk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>