Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Quails can teach us about the gait of Dinosaurs

09.12.2014

Motion scientists and zoologists of Jena University (Germany) study out the gait of birds

Dinosaurs did it. Human beings and monkey do it. And even birds do it. They walk on two legs. And although humans occupy a special position amongst mammals as they have two legs, the upright gait is not reserved only for man. In the course of evolution many animals have developed the bipedal gait – the ability to walk on two legs.


The motion scientists from Jena University had quails walking through a high speed X-ray installation and measured the power at work in their legs.

Photo: Jan-Peter Kasper/FSU


Dr. Emanuel Andrada from the University in Jena (Germany) analyzed the effect of birds posture on the movement of their legs and on their stability when they walk.

Photo: Jan-Peter Kasper/FSU

“Birds are moving forward on two legs as well, although they use a completely different technique from us humans,” Dr. Emanuel Andrada from the Friedrich Schiller University in Jena (Germany) says. Human beings keep their upper bodies generally in an upright position and the body’s center of gravity is directly above the legs.

The bodies of birds on the other hand are horizontally forward-facing, which appears to be awkward at first glance. Hence the motion scientist analyzed – together with colleagues – which effect this posture has on the movement of their legs and on their stability when they walk. The first detailed analysis of its kind has now been published by the scientists in the “Proceedings of the Royal Society B” (DOI: 10.1098/rspb.2014.1405).

To this end the team had quails walking through a high speed X-ray installation at varying speeds. While the installation monitored the movements of the animals meticulously, the scientists were able to measure the power at work in their legs. From this data, the Jena research team could develop a computer model of the whole motion sequence, which served to simulate and analyze the stability and the energy balance in connection to different gaits.

As it turned out, the birds use the so-called “grounded running” style when they move quickly – this is a running style in which at least one leg is always touching the ground. “Even when running quickly, short periods of flight phases occur only very rarely between the individual steps,” Prof. Dr. Reinhard Blickhan, Chair of Motion Science at Jena University explains. But this is extremely energy consuming for the animals because the body’s center of gravity lies distinctly in front of their legs – due to the horizontal posture. “The animals have to constantly balance out their own bodies in order to prevent falling forwards,” says Blickhan.

But this huge effort is worthwhile as the researchers discovered with the help of their computer model. “Unlike the legs of humans which gather energy like two coil springs and use it directly to move forwards, the bird’s legs work in addition like dampers or shock absorbers.” In order to prevent falling forwards or to permanently accelerate their movement, the birds practically have to brake all the time. This happens while the bird leg is working like a spring damper: Energy is hereby withdrawn from the leg, but the amount of energy is the same that was invested in the hip to stabilize the trunk via the turning moment. “This apparent wasting of energy is the price for a very stable posture during locomotion, especially on an uneven terrain,” Blickhan summarizes the result of this study.

After these newly presented results, the Jena researchers anticipate interesting times ahead. They also want to test the gait of other birds with the help of the computer model they developed. And the scientists even want to analyze the locomotion of dinosaurs – the direct forebears of today’s birds. “It is not clear yet how two-legged species like Allosaurus or Tyrannosaurus Rex really moved forward,” says Dr. Andrada. But it is assumed by now that they also ran with their upper bodies thrust forwards horizontally – due to biomechanical advantages.

Original-Publication:
Andrada E. et al.: Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion. Proceedings of the Royal Society B 2014, DOI: 10.1098/rspb.2014.1405

Contact:
Dr. Emanuel Andrada
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1, 07743 Jena
Germany
Phone: +0049 (0)3641 949174
Email: emanuel.andrada[at]uni-jena.de


Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: animals computer model gravity leg locomotion movement own bodies upright walk

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>