Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Quails can teach us about the gait of Dinosaurs

09.12.2014

Motion scientists and zoologists of Jena University (Germany) study out the gait of birds

Dinosaurs did it. Human beings and monkey do it. And even birds do it. They walk on two legs. And although humans occupy a special position amongst mammals as they have two legs, the upright gait is not reserved only for man. In the course of evolution many animals have developed the bipedal gait – the ability to walk on two legs.


The motion scientists from Jena University had quails walking through a high speed X-ray installation and measured the power at work in their legs.

Photo: Jan-Peter Kasper/FSU


Dr. Emanuel Andrada from the University in Jena (Germany) analyzed the effect of birds posture on the movement of their legs and on their stability when they walk.

Photo: Jan-Peter Kasper/FSU

“Birds are moving forward on two legs as well, although they use a completely different technique from us humans,” Dr. Emanuel Andrada from the Friedrich Schiller University in Jena (Germany) says. Human beings keep their upper bodies generally in an upright position and the body’s center of gravity is directly above the legs.

The bodies of birds on the other hand are horizontally forward-facing, which appears to be awkward at first glance. Hence the motion scientist analyzed – together with colleagues – which effect this posture has on the movement of their legs and on their stability when they walk. The first detailed analysis of its kind has now been published by the scientists in the “Proceedings of the Royal Society B” (DOI: 10.1098/rspb.2014.1405).

To this end the team had quails walking through a high speed X-ray installation at varying speeds. While the installation monitored the movements of the animals meticulously, the scientists were able to measure the power at work in their legs. From this data, the Jena research team could develop a computer model of the whole motion sequence, which served to simulate and analyze the stability and the energy balance in connection to different gaits.

As it turned out, the birds use the so-called “grounded running” style when they move quickly – this is a running style in which at least one leg is always touching the ground. “Even when running quickly, short periods of flight phases occur only very rarely between the individual steps,” Prof. Dr. Reinhard Blickhan, Chair of Motion Science at Jena University explains. But this is extremely energy consuming for the animals because the body’s center of gravity lies distinctly in front of their legs – due to the horizontal posture. “The animals have to constantly balance out their own bodies in order to prevent falling forwards,” says Blickhan.

But this huge effort is worthwhile as the researchers discovered with the help of their computer model. “Unlike the legs of humans which gather energy like two coil springs and use it directly to move forwards, the bird’s legs work in addition like dampers or shock absorbers.” In order to prevent falling forwards or to permanently accelerate their movement, the birds practically have to brake all the time. This happens while the bird leg is working like a spring damper: Energy is hereby withdrawn from the leg, but the amount of energy is the same that was invested in the hip to stabilize the trunk via the turning moment. “This apparent wasting of energy is the price for a very stable posture during locomotion, especially on an uneven terrain,” Blickhan summarizes the result of this study.

After these newly presented results, the Jena researchers anticipate interesting times ahead. They also want to test the gait of other birds with the help of the computer model they developed. And the scientists even want to analyze the locomotion of dinosaurs – the direct forebears of today’s birds. “It is not clear yet how two-legged species like Allosaurus or Tyrannosaurus Rex really moved forward,” says Dr. Andrada. But it is assumed by now that they also ran with their upper bodies thrust forwards horizontally – due to biomechanical advantages.

Original-Publication:
Andrada E. et al.: Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion. Proceedings of the Royal Society B 2014, DOI: 10.1098/rspb.2014.1405

Contact:
Dr. Emanuel Andrada
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstraße 1, 07743 Jena
Germany
Phone: +0049 (0)3641 949174
Email: emanuel.andrada[at]uni-jena.de


Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: animals computer model gravity leg locomotion movement own bodies upright walk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>