Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is insight the tomato? Breeding has had influenced the chemical composition of tomato fruits

19.02.2018

Plant cultivation and breeding was the foundation of humans’ sedentary lifestyle. But how did the human influence affect plants and their chemical constitution? Researchers from China, USA, Bulgaria and Germany, among them is Alisdair Fernie of the Max Planck Institute of Molecular Plant Physiology (MPI-MP) in Potsdam, Germany, asked themselves this question and chose tomato for their detailed analyses. The aim of their work was to gain new insights into breeding and their consequences. The researchers analysed the metabolic constitution and the genetic background of the fruits. They published an overview about the human influence on the chemical composition of a crop for the first time.

Tomatoes and their wild relatives


Colourful mixture - Tomato breeding offers a wide variety

MPI-MP, S. Osorio Algar

Originally, tomatoes are from South- and Middle-America, where the Mayas cultivated them. The origin of their wild relatives is located in the Andes. Here, wild tomatoes have small and partly bitter-tasting or even toxic berries. Tomatoes belong to the nightshade family (Solanaceae), which includes foods as potato and pepper, as well as toxic plants as belladonna.

So-called alkaloids are responsible for the bitter tasting/toxic compounds. The plant uses them to protect themselves against herbivores and pathogens. In the course of domestication and by modern breeding programs, the bitter tasting compounds of the tomato were reduced and larger fruits were selected.

Challenges in breeding

Genetic inheritance is a complex process and breeding of plants with respect to favored characteristics is a difficult exercise. The reason is that characteristics, as fruit size are influenced by more than one gene. Moreover, different versions of one gene can exist in one living organism. This is comparable to the variety of written forms of one sound.

For example, be, eat and see are written differently, but the letters e, ea and ee sound similar in these words. That is how the DNA code of genes can be written differently, which results in a variable characteristic value. In addition, the qualitative nature of characteristics is not only influenced by genes and their different versions, but also by environmental conditions.

New methods in plant research allow deeper analysis of breeding results

Staying with tomato, one can easily imagine that breeding of larger fruits has to be coupled to other changes in the plant. Not only an increase in fruit size by increasing cell number had to be implemented during the breeding process but also the chemical composition is adapted via the accumulation of higher amounts of metabolites or even with production of new compounds. As such, the enlargement of fruits has to be coupled to changes at the genomic level, including the DNA code, its transcription and translation into (metabolic) processes.

Modern techniques and analysis methods give the opportunity to study plants at different levels. Actually, that is what the research team has done in the current study. “We have analyzed and compared the genetic and metabolic composition of up to 610 tomatoes of different origin”, explains Alisdair Fernie.

The comparison of wild and cultivated tomatoes is decisive here, because small berry-like fruits of the wild species were transformed into red tomatoes, which were nearly hundred times larger. The breeding process passed through two main stages. First, the plants were domesticated and secondly, they were improved. The researchers found that these two phases seemed to have had a different influence on the chemical composition of the fruit.

Genes in the piggyback

With the help of comprehensive genome and metabolite analyses, the research team could show that the breeding phase to improve the plant had a stronger influence on the metabolite content. “We found two different selection mechanisms in this breeding phase. On one hand, the taste was bred directly, as fruits with less bitter taste were selected. Moreover, we found that fruit size is strongly associated with metabolites. In this manner, the taste was bred indirectly by selecting larger fruits”, Alisdair Fernie says.

It appears that the respective genes of the metabolism “hitchhike”! They are coupled to the genes responsible for fruit size and thus are genetically inherited together. Here, the researchers have excluded a direct influence of the fruit size genes on the metabolites. Therefore, it seems to be coincidental rather than the result of directed breeding that larger fruits contain better tasting metabolites.

Understanding of control mechanisms, improvement of breeding programs

The diverse data obtained give insights into the variation of the metabolism and its genetic and biochemical control mechanisms. The knowledge currently available about the chemical composition of tomatoes and their molecular biological relations could lead to an improvement of the fruit quality with corresponding breeding programs. Moreover, these data can be used in further detailed studies to analyze control mechanisms of tomato metabolism.

Contact
Prof. Dr. Alisdair Fernie
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8211
fernie@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Public Relations
Max Planck Institute of Molecular Planz Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original Publication
Guangtao Zhu, Shouchuang Wang, Zejun Huang, Shuaibin Zhang, Qinggang Liao, Chunzhi Zhang, Tao Lin, Mao Qin, Meng Peng, Chenkun Yang, Xue Cao, Xu Han, Xiaoxuan Wang, Esther van der Knaap, Zhonghua Zhang, Xia Cui, Harry Klee, Alisdair R. Fernie, Jie Luo, Sanwen Huang (2018).
Rewiring of the Fruit Metabolome in Tomato Breeding.
Cell, Volume 172, Issue 1, 249 - 261.e12. DOI: http://dx.doi.org/10.1016/j.cell.2017.12.019

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2197812/tomateninhaltsstoffe

Dr. Ulrike Glaubitz | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>