Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Holds Chromosomes Together - Max Planck Scientists Elucidate Operating Mode of DNA-Packaging

26.05.2015

All living organisms consist of cells that have arisen from other living cells by the process of cell division. In order to ensure that the genetic material is equally and accurately distributed between the two daughter cells during cell division, the DNA fibers must remain in an orderly and closely-packed condition.

At the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, scientists have now elucidated how this packaging process works in bacteria. Their studies showed that the SMC protein complex holds DNA together like a clip and thus keeps the genetic material in order.


The SMC protein complex (green, blue, orange) embraces the DNA like a clip and thus, keeps the genetic material in order.

Larissa Wilhelm / Copyright: MPI of Biochemistry

In each human cell, about two meters of DNA must fit into a cell nucleus that has a diameter of only a few thousandths of a millimeter. Here, the DNA is organized in individual chromosomes. In order to ensure the DNA’s secure transport during cell division, the long and coiled DNA fibers must be tightly packed.

So far, scientists have only a sketchy understanding of this step: The SMC protein complexes play a key role in this process. They consist of two arms (SMC) and a bridge (kleisin). Together, they form a ring-like structure. “You can understand how important these protein complexes are when you look at their evolution,” explains Larissa Wilhelm, PhD student at the MPI of Biochemistry. “Structure and operating mode are quite similar in bacteria and humans.”

There are different possibilities as to how the SMC protein complex could pack up DNA. It could for example stick together the different DNA fibers. However, the Max Planck scientists were able to show in bacteria that the SMC protein arms embrace the DNA like a clip, thus enabling the connection of pieces of the DNA that lie wide apart from each other.

In a next step, the members of the research group “Chromosome Organization and Dynamics” want to find out whether the clip either opens for a short period of time in which it embraces already formed DNA loops, or whether the clip first binds to the DNA and then forms DNA loops itself by encasing the DNA.

“Our results could also help to better understand the complex organization of human chromosomes and hereby allow insights into the development of genetic defects such as Trisomy 21” says Stephan Gruber, group leader at the MPI of Biochemistry.

Original Publication
L. Wilhelm, F. Bürmann, A. Minnen, H.-C. Shin, C.P. Toseland, B.-H. Oh, S. Gruber: SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLIFE, May 7, 2015.
DOI: 10.7554/eLife.06659

Contact
Dr. Stephan Gruber
Chromosome Organization and Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: sgruber@biochem.mpg.de
www.biochem.mpg.de/gruber

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press release of the Max Planck Institute of Biochemistry
http://www.biochem.mpg.de/gruber - Website of the research group "Chromosome Organization and Dynamics" (Stephan Gruber)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>