Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Holds Chromosomes Together - Max Planck Scientists Elucidate Operating Mode of DNA-Packaging

26.05.2015

All living organisms consist of cells that have arisen from other living cells by the process of cell division. In order to ensure that the genetic material is equally and accurately distributed between the two daughter cells during cell division, the DNA fibers must remain in an orderly and closely-packed condition.

At the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, scientists have now elucidated how this packaging process works in bacteria. Their studies showed that the SMC protein complex holds DNA together like a clip and thus keeps the genetic material in order.


The SMC protein complex (green, blue, orange) embraces the DNA like a clip and thus, keeps the genetic material in order.

Larissa Wilhelm / Copyright: MPI of Biochemistry

In each human cell, about two meters of DNA must fit into a cell nucleus that has a diameter of only a few thousandths of a millimeter. Here, the DNA is organized in individual chromosomes. In order to ensure the DNA’s secure transport during cell division, the long and coiled DNA fibers must be tightly packed.

So far, scientists have only a sketchy understanding of this step: The SMC protein complexes play a key role in this process. They consist of two arms (SMC) and a bridge (kleisin). Together, they form a ring-like structure. “You can understand how important these protein complexes are when you look at their evolution,” explains Larissa Wilhelm, PhD student at the MPI of Biochemistry. “Structure and operating mode are quite similar in bacteria and humans.”

There are different possibilities as to how the SMC protein complex could pack up DNA. It could for example stick together the different DNA fibers. However, the Max Planck scientists were able to show in bacteria that the SMC protein arms embrace the DNA like a clip, thus enabling the connection of pieces of the DNA that lie wide apart from each other.

In a next step, the members of the research group “Chromosome Organization and Dynamics” want to find out whether the clip either opens for a short period of time in which it embraces already formed DNA loops, or whether the clip first binds to the DNA and then forms DNA loops itself by encasing the DNA.

“Our results could also help to better understand the complex organization of human chromosomes and hereby allow insights into the development of genetic defects such as Trisomy 21” says Stephan Gruber, group leader at the MPI of Biochemistry.

Original Publication
L. Wilhelm, F. Bürmann, A. Minnen, H.-C. Shin, C.P. Toseland, B.-H. Oh, S. Gruber: SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. eLIFE, May 7, 2015.
DOI: 10.7554/eLife.06659

Contact
Dr. Stephan Gruber
Chromosome Organization and Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: sgruber@biochem.mpg.de
www.biochem.mpg.de/gruber

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
www.biochem.mpg.de/news

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press release of the Max Planck Institute of Biochemistry
http://www.biochem.mpg.de/gruber - Website of the research group "Chromosome Organization and Dynamics" (Stephan Gruber)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>