Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Droppings Can Tell Us

22.06.2015

If you want to find out about the shy Eurasian otter, its droppings are a fascinating source of information. By isolating DNA from otter droppings – known as spraint – researchers can not only identify individual animals but also estimate the size of the population. But it's important to know how to interpret the information correctly. A team led by Simone Lampa from the Helmholtz Centre for Environmental Research (UFZ) in Leipzig reports on the benefits and drawbacks of the method in science journal PLoS ONE.

Eurasian otters are elusive creatures. Only rarely do researchers manage to observe these shy animals directly in the wild. Trampled vegetation at the water's edge, slides into the water and accumulations of spraints are often the only clues to their presence. So figuring out how many otters there are in a given locality is very difficult.


Eurasian otters (Lutra lutra. L.) are only rarely seen in daylight. One reason why our knowledge about the threatened species is still very limited.

Foto: André Künzelmann/UFZ

"But with threatened species, this is very important information," says Simone Lampa from the Department of Conservation Biology at UFZ. Only with reliable figures can we tell whether protective measures are having any impact or whether new problems are emerging.

In the case of the otter, all the signs seem to indicate a positive trend. In the 19th and 20th centuries, hunters massively reduced otter numbers and the species completely disappeared from many parts of central Europe. But since the 1990s, its distribution has gradually been increasing again.

Most of the clues have been provided by analysing spraint. The animals leave their droppings in certain places in order to communicate with other otters. The standard method of otter research is therefore to look for these marks and conclude whether or not otters are present in the area.

However, this tells us nothing about the number of animals present, because several otters may be living in the same area and leaving droppings in the same places. What's more, otter droppings look very similar to those of the introduced North American mink, which can easily lead to confusion.

So for a number of years biologists have been using genetic analysis, which allows them to identify each individual animal. Spraint contains intestinal cells from which the genetic material DNA can be isolated. The DNA contains certain segments typical of otters, and the length of these so-called microsatellites varies from one individual to another.

These unique genetic 'fingerprints' are analysed by Simone Lampa and her colleagues in the biosphere reserve of Oberlausitzer Heide- und Teichlandschaft in eastern Saxony. "The otter never disappeared from this area," she explains. "And from here it's spreading westwards." This makes it even more interesting to find out more about the development of this population. The researchers at UFZ spent six years collecting and genetically analysing otter spraint.

They discovered that around 20 otters are living in the investigated area of about 35 square kilometres. The number fluctuates from year to year depending on how many ponds are being farmed and therefore offering rich yields of fish.

To arrive at these figures, the researchers don't need to find spraints from each individual animal. Instead, on each collection trip they determine how many spraints come from known individuals and how many from unknown ones. Using this ratio, they can apply mathematical formulae to estimate the probable size of the population. This method, known as non-invasive genetic mark-recapture, has become increasingly popular in conservation research in recent years.

During their investigations, however, the UFZ team have discovered some problems with the technique. The method is based on the assumption that every otter exhibits the same marking behaviour. "As far as the amount of spraint is concerned, that is correct," says Simone Lampa.

But there are differences in quality. Otters generally leave different types of spraints: as well as dry droppings and those covered with a slime layer, they also produce lumps of anal secretions, so-called anal jellies. These are often found on rocks and in other exposed places where they are easy to spot. Because it is also easier to isolate DNA from this material than from normal droppings, many studies prefer the analysis of this type of sample.

But the Leipzig-based researchers have now discovered that male otters produce anal secretions more frequently than females. As a result, spraints from males are investigated more frequently than spraints from females, distorting the results. Consequently, several otter studies conclude that investigated populations have a surplus of males which probably does not exist in reality. "We shouldn't focus too much on anal secretions," says Simone Lampa. Other spraint samples are more time-consuming to collect and analyse, but they yield more representative results.

Another problem is that the analysis of the DNA sequences does not always produce 100% accurate results. Otter DNA passes through the extremely aggressive environment of the animal's digestive tract, and components may be easily misidentified. Just one mistake of this kind could result in a known individual being identified as an unknown one.

This creates 'phantom' animals in the data which do not actually exist. Although Simone Lampa has analysed every sample between three and 26 times to minimise such errors, three or four 'virtual' otters remain. Computer models are available to eliminate errors of this type from the data. "It's essential to use these models in genetic mark-recapture studies," she says. Otherwise the size of the population will be overestimated, which in the case of threatened species like the Eurasian otter could be fatal.

The animals themselves don't make the researchers' job any easier, either. Although the analysed spraints are left where they are found, an otter seems to notice if someone has been tampering with them. Animals whose spraint has been analysed display particular eagerness to mark, adding another error to the statistics which needs to be eliminated. "But even when you take all of this into account, genetic mark-recapture studies are a very good method of finding out more about otter populations," says Simone Lampa. For the elusive otters, it's getting harder to keep their secrets to themselves.

Publication:
Simone Lampa, Jean-Baptiste Mihoub, Bernd Gruber, Reinhard Klenke, Klaus Henle (2015): Non-Invasive Genetic Mark-Recapture as a Means to Study Population Sizes and Marking Behaviour of the Elusive Eurasian Otter (Lutra lutra). PLoS ONE 10(5): e0125684.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125684
The study was founded by the the German Science Foundation (DFG; grant
GR 1960/2-1) and supported by the by the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE).

Further information:
Simone Lampa
Helmholtz Centre for Environmental Research (UFZ)
Department of Conservation Biology
Tel. +49 (0)341-235-1652
http://www.ufz.de/index.php?en=19705
or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49 (0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640

Further link:
DFG project “Effects of land use change on the population dynamic and distribution of the Eurasian otter (Lutra lutra) in Saxony and Germany”
http://www.ufz.de/index.php?en=14012

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotech-nologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our re-search contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ em-ploys more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in socie-ty, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as avia-tion, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an an-nual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33936

Tilo Arnhold | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>