Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many ways to grow

25.05.2009
Environmental conditions may determine which particular process plants will use to build an essential hormone

For the better part of a century, scientists have recognized indole-3-acetic acid (IAA), one of several hormones known as auxins, as one of the most important drivers of plant growth and development. However, it remains unclear exactly how IAA is synthesized. Previous research has identified at least four different enzymatic ‘assembly lines’ that may be involved in its production, and each of these pathways generates chemical compounds that are potential precursors to IAA, as well as a number of other biologically important molecules involved in protecting plants against predators and pathogens.

In the thale cress plant, Arabidopsis thaliana, indole-3-actaldoxime (IAOx) is thought to represent a likely intermediate compound in IAA production via two of these candidate pathways, CYP79B and YUC. In order to clarify which of these contribute primarily to production of IAOx and IAA, Hiroyuki Kasahara of the RIKEN Plant Science Center in Yokohama and colleagues generated several mutant Arabidopsis strains in which key enzymes in either pathway had been ablated.

From the data, the team consistently identified an exclusive role for the CYP79B pathway in IAOx production and—by extension—IAA synthesis, and demonstrated no effect on levels of either compound resulting from interference with YUC-associated enzymes1. They also identified two compounds, indole-3-acetamide and indole-3-acetonitrile, as likely intermediates in the conversion of IAOx to IAA. Many plant species, including tobacco and rice, lack the CYP79B pathway altogether and do not produce detectable IAOx. However, these plants do produce these other IAA intermediates, suggesting the existence of yet-unidentified, parallel biosynthetic pathways in these species.

These findings indicate the need for a considerable reorganization of existing models of plant hormone synthesis. “Before this research, three proposed pathways were thought to converge at IAOx or its metabolites,” says Kasahara. “We have clearly separated these pathways.” Interestingly, their data also revealed that even in Arabidopsis, CYP79B does not represent the primary pathway of IAA production; instead, it is simply one of several that appear to contribute under different, specific conditions—in this case, cultivation at higher than room temperature.

Other non-IAOx biosynthetic pathways appear to be common to most plant species and Kasahara and colleagues now hope to clarify their independent contributions to overall IAA production. “We do not know why plants have so many biosynthetic pathways for IAA,” he says. “Here we showed that the IAOx pathway contributes to IAA generation under high temperature conditions, and now we are studying the physiological roles of other IAA biosynthetic pathways.”

Reference

1. Sugawara, S., Hishiyama, S., Jikumaru, Y., Hanada, A., Nishimura, T., Koshiba, T., Zhao, Y., Kamiya, Y. & Kasahara, H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences USA 106, 5430–5435 (2009).

The corresponding author for this highlight is based at the RIKEN Growth Regulation Research Team

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/705/
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>