Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the Inflammation Process in Real Time

19.10.2015

Junior Scientist from the Jena University develops a test system for the search for new active ingredients

Asthma bronchiale, hayfever or neurodermatitis – allegies are on the increase in Western European industrial countries. According to the Robert-Koch-Institute every third adult falls ill with an allergy at least once in their lives. The reasons for allergic reactions are inflammation processes of the immune system. The enzyme 5-Lipoxygenase, or in short, 5-LO, plays a pivotal role in this.


Dr. Ulrike Garscha from Jena University investigates the molecular inflammation processes by fluorescence microscopy.

Photo: Anne Günther/FSU

“This enzyme regulates the inflammation activities by catalyzing the biosynthesis of pro-inflammatory mediators,“ as Dr. Ulrike Garscha of the Friedrich Schiller University Jena (Germany) says. Therefore, the 5-LO would be a promising target for active compounds in the treatment of inflammatory diseases. However, the pharmacist concedes, there is only one approved pharmaceutical on the US market, and due to serious side-effects it can only be used to a very limited extend.

The Jena junior scientists from the Chair for Pharmaceutical and Medical Chemistry and their small team now have worked out a new approach, which can considerably advance the search for drugs in this area. Ulrike Garscha and her colleagues from Jena together with scientists from the Karolinska Institute in Stockholm published their account of their research in the well-known science magazine 'FASEB Journal'.

In this they report on how they were able to study in detail the mechanism through which the 5-LO together with another protein called FLAP starts the inflammation processes (DOI: 10.1096/fj.15-278010).

To be able to do so, the researchers have developed a cellular system on which they worked for years and which allows them to watch the unfolding processes time-resolved and in high precision. Thus the researchers provide a method through which tests for appropriate candidates for active compounds can be much more finely targeted.

“For some years there has been the assumption that 5-LO and FLAP interact,“ stresses Prof. Dr. Oliver Werz from the University Jena, at whose chair Dr. Garscha's team works. As soon as a cell of the immune system receives an inflammation signal, the 5-LO, which normally moves freely within the cell, wanders to the membrane of the cell nucleus and interacts there with FLAP. “Only when they are associated with each other the two molecules are able to unfold their impact and to start an inflammation,“ says Werz.

Although this assembly has been widely acknowledged by the international scientific community it has until now never been established conclusively: The Jena pharmacists were the first to prove it. To this end they made the interaction of the partaking proteins in human immune cells visible through fluorescent dye and observed the result by microscopy. Thus the scientists were also able to clarify the exact regulatory mechanism through which the two molecules control the inflammatory process.

“While to start with in the first minutes of the interaction a flexible complex from both molecules is formed, which induces the synthesis of pro-inflammatory substances, after two to three minutes a stable assembly of 5-LO and FLAP is formed, which decreases the activity of the enzymes again,“ Ulrike Garscha explains. The 36 year old junior scientist is convinced that new therapeutic approaches in the treatment of inflammatory diseases will derive from these findings in the long run.

Original Publication:
Gerstmeier J et al. Time-resolved in situ assembly of leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes, The FASEB Journal 2015, DOI: 10.1096/fj.15-278010

Contact:
Dr. Ulrike Garscha, Prof. Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Germany
Philosophenweg 14, 07743 Jena
Phone: ++49 3641 / 949811, ++49 3641 / 949801
Email: ulrike.garscha[at]uni-jena.de, oliver.werz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>