Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the Inflammation Process in Real Time

19.10.2015

Junior Scientist from the Jena University develops a test system for the search for new active ingredients

Asthma bronchiale, hayfever or neurodermatitis – allegies are on the increase in Western European industrial countries. According to the Robert-Koch-Institute every third adult falls ill with an allergy at least once in their lives. The reasons for allergic reactions are inflammation processes of the immune system. The enzyme 5-Lipoxygenase, or in short, 5-LO, plays a pivotal role in this.


Dr. Ulrike Garscha from Jena University investigates the molecular inflammation processes by fluorescence microscopy.

Photo: Anne Günther/FSU

“This enzyme regulates the inflammation activities by catalyzing the biosynthesis of pro-inflammatory mediators,“ as Dr. Ulrike Garscha of the Friedrich Schiller University Jena (Germany) says. Therefore, the 5-LO would be a promising target for active compounds in the treatment of inflammatory diseases. However, the pharmacist concedes, there is only one approved pharmaceutical on the US market, and due to serious side-effects it can only be used to a very limited extend.

The Jena junior scientists from the Chair for Pharmaceutical and Medical Chemistry and their small team now have worked out a new approach, which can considerably advance the search for drugs in this area. Ulrike Garscha and her colleagues from Jena together with scientists from the Karolinska Institute in Stockholm published their account of their research in the well-known science magazine 'FASEB Journal'.

In this they report on how they were able to study in detail the mechanism through which the 5-LO together with another protein called FLAP starts the inflammation processes (DOI: 10.1096/fj.15-278010).

To be able to do so, the researchers have developed a cellular system on which they worked for years and which allows them to watch the unfolding processes time-resolved and in high precision. Thus the researchers provide a method through which tests for appropriate candidates for active compounds can be much more finely targeted.

“For some years there has been the assumption that 5-LO and FLAP interact,“ stresses Prof. Dr. Oliver Werz from the University Jena, at whose chair Dr. Garscha's team works. As soon as a cell of the immune system receives an inflammation signal, the 5-LO, which normally moves freely within the cell, wanders to the membrane of the cell nucleus and interacts there with FLAP. “Only when they are associated with each other the two molecules are able to unfold their impact and to start an inflammation,“ says Werz.

Although this assembly has been widely acknowledged by the international scientific community it has until now never been established conclusively: The Jena pharmacists were the first to prove it. To this end they made the interaction of the partaking proteins in human immune cells visible through fluorescent dye and observed the result by microscopy. Thus the scientists were also able to clarify the exact regulatory mechanism through which the two molecules control the inflammatory process.

“While to start with in the first minutes of the interaction a flexible complex from both molecules is formed, which induces the synthesis of pro-inflammatory substances, after two to three minutes a stable assembly of 5-LO and FLAP is formed, which decreases the activity of the enzymes again,“ Ulrike Garscha explains. The 36 year old junior scientist is convinced that new therapeutic approaches in the treatment of inflammatory diseases will derive from these findings in the long run.

Original Publication:
Gerstmeier J et al. Time-resolved in situ assembly of leukotriene-synthetic 5-lipoxygenase/5-lipoxygenase-activating protein complex in blood leukocytes, The FASEB Journal 2015, DOI: 10.1096/fj.15-278010

Contact:
Dr. Ulrike Garscha, Prof. Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Germany
Philosophenweg 14, 07743 Jena
Phone: ++49 3641 / 949811, ++49 3641 / 949801
Email: ulrike.garscha[at]uni-jena.de, oliver.werz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>