Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate could speed forest regrowth in eastern US

17.04.2018

Faster takeover by trees could boost carbon sequestration on abandoned land

Climate change could speed the natural regrowth of forests on undeveloped or abandoned land in the eastern U.S., according to a new study.


Researchers grew tree seedlings in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

Credit: Photo by Jason Fridley, Syracuse University.

If left to nature's own devices, a field of weeds and grasses over time will be replaced by saplings, young trees and eventually mature forest. Earlier research has shown that this succession from field to forest can happen decades sooner in the southeastern U.S. than in the Northeast. But it wasn't obvious why, especially since northern and southern fields are first colonized by many of the same tree species.

Now, a study published Proceedings of the National Academy of Sciences points to temperature as the major factor influencing the pace at which trees take over.

The results suggest that as temperatures rise, faster-growing forests on lands that humans have left idle could play a bigger role in removing carbon dioxide from the atmosphere, say researchers from Duke University and Syracuse University.

The team conducted the experiment at six sites up and down the eastern U.S., from New York to Florida.

At each site, the researchers followed the early lives of four tree species that are common early arrivals in abandoned farm fields -- loblolly pine, black cherry, red cedar and sweetgum.

Using plastic wading pools as planters, they grew the trees from seed in plots with varying soil fertility, and with and without different mixes of early succession plants such as broomsedge and goldenrod.

In each plot the researchers also measured light availability, soil moisture, nutrients and other variables known to affect plant growth.

After two years, the tree seedlings grew faster at southern sites. But surprisingly, other plant species grew slower.

One possibility is that soil fertility is the main factor, said co-author Jason Fridley, associate professor of biology at Syracuse University. The thinking was that poorer southern soils produce a sparser carpet of weeds and grasses. This might in turn shade emerging tree seedlings to a lesser extent than in the north, and make it easier for them to grow up through the gaps.

But statistical analyses weighing the relative effects of soil fertility and other factors revealed that temperature was the biggest driver of tree seedling growth. Part of the reason is that milder winters and earlier springs mean a longer growing season, said Justin Wright, associate professor of biology at Duke.

The results are important because average annual temperatures in the eastern U.S. are predicted to warm by five to nine degrees Fahrenheit by the end of the century.

Rising temperatures could also bring more droughts, Wright cautions. But in the absence of drought stress, even minor warming will likely accelerate the transition from field to forest.

This also means that northeastern meadows that normally persist for decades may become shorter-lived, Fridley said. The forests that replace them probably won't mirror native forests, he added -- especially if cold-intolerant trees that are common colonizers of southern fields find it increasingly easy to survive and take hold in the north.

"Certainly in the next 100 years and maybe in the next 50 years, fields will likely transition much faster to woody vegetation," Fridley said. "The double whammy is the trees themselves are going to change too."

But young, rapidly growing trees can potentially absorb more carbon dioxide than weeds and grasses as they convert the heat-trapping gas to the sugar they need to grow. That means that undeveloped or abandoned land, if left undisturbed, could soon play a bigger role in offsetting human sources of carbon dioxide emissions.

"Faster-growing forests on once-cultivated land aren't going to solve the climate change problem," Wright said. "But one of the reasons we care about these abandoned sites is they have really high potential for carbon sequestration."

###

This research was supported by the U.S. National Science Foundation (DEB 1119743, DEB 1119715).

CITATION: "Temperature Accelerates the Rate Fields Become Forests," Jason Fridley and Justin Wright. Proceedings of the National Academy of Sciences, April 16, 2018. DOI: 10.1073/pnas.1716665115

Robin Ann Smith | EurekAlert!
Further information:
https://today.duke.edu/2018/04/warming-climate-could-speed-forest-regrowth-eastern-us
http://dx.doi.org/10.1073/pnas.1716665115

Further reports about: Warming climate dioxide fertility soil fertility tree species

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>