Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voltage tester for beating cardiac cells

18.02.2015

Electrical impulses play an important role in cells of the human body. For example, neurons use these impulses to transmit information along their branches and the body also uses them to control the contraction of muscles.

The impulses are generated when special channel proteins open in the outer envelope of the cells, allowing charged molecules (ions) to enter or exit the cell. These proteins are referred to as ion channels.

Since the 1970s, a method has been available to researchers that enables measurement of the activity of these channels, but until now this method has been used primarily on cells that do not move. Electrical engineers at ETH Zurich and biologists from the University of Bern have now developed the method further, so that they can easily record the activity of moving cells, such as beating cardiac muscle cells in a tissue culture dish.

The existing method involves positioning a glass pipette against the outer membrane of a cell. The opening at the tip of the pipette is so small that it touches only a fraction of the cell surface. Ideally, this tiny patch of cell membrane has exactly one ion channel.

The inside of the pipette is filled with a conductive fluid and an electrode, which makes it possible to measure differences in the charge between the outer part of the cell and cell interior (i.e. an electric potential ) and temporary changes in this potential resulting from activity in the ion channels. The method is referred to as the patch-clamp technique because the pipette is used to clamp a patch of the cell membrane.

Atomic force microscope with micro-injection needle

Lead by Tomaso Zambelli, a lecturer at the Institute of Biomedical Engineering at ETH Zurich, and Hugues Abriel, a professor at the Department of Clinical Research at the University of Bern, the researchers have now combined this technique with an atomic force microscope. A sensor tip is seated on a movable mount - a so called cantilever - to scan the surface of the microscopic object.

Several years ago, the researchers succeeded in producing sensor tips with an internal channel, which allows the computer-controlled injection of molecules into a cell. This technique is now being marketed by the ETH spin-off Cytosurge. However, the scientists continued development of this technique by fitting the micro-injection needle with an electrode to carry out patch-clamp measurements. The researchers have now published the successful results of this venture in the journal Nano Letters.

The patch-clamp technique is not only a central method for basic research in cell biology, it is also used routinely in the development of new drugs. For example, the pharmaceutical industry is legally required as part of the approval process for new drugs to test whether these drugs interact with ion channels. A drug that blocks ion channels may cause severe cardiac dysrhythmia in patients, which should be avoided at all costs.

Longer measurements and automation possible

In the case of the conventional patch-clamp technique, an operator manually positions the pipette against the cell; although automated procedures exists, their applications are limited. Thus, the cells under test must have the same size and shape and must not move (as cardiac cells do).

In the case of the new method, the micro-needle is controlled by a computer using force measurements from the atomic force microscope to hold it at a constant short distance from the cell surface. "This makes the contact between the needle and cell much more stable, which allows us to take measurements over a longer period of time and even test moving cells," explains Zambelli. For the first time, researchers have thus succeeded in measuring electric potential changes in the ion channels of beating cardiac cells. Zambelli says he can also imagine using this as a foundation for development of an automated method for testing any cell, regardless of its shape or size.

###

Literature reference

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardiac Cells. Nano Letters 2015, doi: 10.1021/nl504438z

Media Contact

Tomaso Zambelli
zambelli@biomed.ee.ethz.ch
41-446-324-575

 @ETH_en

http://www.ethz.ch/index_EN 

Tomaso Zambelli | EurekAlert!

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>