Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voltage tester for beating cardiac cells

18.02.2015

Electrical impulses play an important role in cells of the human body. For example, neurons use these impulses to transmit information along their branches and the body also uses them to control the contraction of muscles.

The impulses are generated when special channel proteins open in the outer envelope of the cells, allowing charged molecules (ions) to enter or exit the cell. These proteins are referred to as ion channels.

Since the 1970s, a method has been available to researchers that enables measurement of the activity of these channels, but until now this method has been used primarily on cells that do not move. Electrical engineers at ETH Zurich and biologists from the University of Bern have now developed the method further, so that they can easily record the activity of moving cells, such as beating cardiac muscle cells in a tissue culture dish.

The existing method involves positioning a glass pipette against the outer membrane of a cell. The opening at the tip of the pipette is so small that it touches only a fraction of the cell surface. Ideally, this tiny patch of cell membrane has exactly one ion channel.

The inside of the pipette is filled with a conductive fluid and an electrode, which makes it possible to measure differences in the charge between the outer part of the cell and cell interior (i.e. an electric potential ) and temporary changes in this potential resulting from activity in the ion channels. The method is referred to as the patch-clamp technique because the pipette is used to clamp a patch of the cell membrane.

Atomic force microscope with micro-injection needle

Lead by Tomaso Zambelli, a lecturer at the Institute of Biomedical Engineering at ETH Zurich, and Hugues Abriel, a professor at the Department of Clinical Research at the University of Bern, the researchers have now combined this technique with an atomic force microscope. A sensor tip is seated on a movable mount - a so called cantilever - to scan the surface of the microscopic object.

Several years ago, the researchers succeeded in producing sensor tips with an internal channel, which allows the computer-controlled injection of molecules into a cell. This technique is now being marketed by the ETH spin-off Cytosurge. However, the scientists continued development of this technique by fitting the micro-injection needle with an electrode to carry out patch-clamp measurements. The researchers have now published the successful results of this venture in the journal Nano Letters.

The patch-clamp technique is not only a central method for basic research in cell biology, it is also used routinely in the development of new drugs. For example, the pharmaceutical industry is legally required as part of the approval process for new drugs to test whether these drugs interact with ion channels. A drug that blocks ion channels may cause severe cardiac dysrhythmia in patients, which should be avoided at all costs.

Longer measurements and automation possible

In the case of the conventional patch-clamp technique, an operator manually positions the pipette against the cell; although automated procedures exists, their applications are limited. Thus, the cells under test must have the same size and shape and must not move (as cardiac cells do).

In the case of the new method, the micro-needle is controlled by a computer using force measurements from the atomic force microscope to hold it at a constant short distance from the cell surface. "This makes the contact between the needle and cell much more stable, which allows us to take measurements over a longer period of time and even test moving cells," explains Zambelli. For the first time, researchers have thus succeeded in measuring electric potential changes in the ion channels of beating cardiac cells. Zambelli says he can also imagine using this as a foundation for development of an automated method for testing any cell, regardless of its shape or size.

###

Literature reference

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardiac Cells. Nano Letters 2015, doi: 10.1021/nl504438z

Media Contact

Tomaso Zambelli
zambelli@biomed.ee.ethz.ch
41-446-324-575

 @ETH_en

http://www.ethz.ch/index_EN 

Tomaso Zambelli | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>