Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voltage tester for beating cardiac cells

18.02.2015

Electrical impulses play an important role in cells of the human body. For example, neurons use these impulses to transmit information along their branches and the body also uses them to control the contraction of muscles.

The impulses are generated when special channel proteins open in the outer envelope of the cells, allowing charged molecules (ions) to enter or exit the cell. These proteins are referred to as ion channels.

Since the 1970s, a method has been available to researchers that enables measurement of the activity of these channels, but until now this method has been used primarily on cells that do not move. Electrical engineers at ETH Zurich and biologists from the University of Bern have now developed the method further, so that they can easily record the activity of moving cells, such as beating cardiac muscle cells in a tissue culture dish.

The existing method involves positioning a glass pipette against the outer membrane of a cell. The opening at the tip of the pipette is so small that it touches only a fraction of the cell surface. Ideally, this tiny patch of cell membrane has exactly one ion channel.

The inside of the pipette is filled with a conductive fluid and an electrode, which makes it possible to measure differences in the charge between the outer part of the cell and cell interior (i.e. an electric potential ) and temporary changes in this potential resulting from activity in the ion channels. The method is referred to as the patch-clamp technique because the pipette is used to clamp a patch of the cell membrane.

Atomic force microscope with micro-injection needle

Lead by Tomaso Zambelli, a lecturer at the Institute of Biomedical Engineering at ETH Zurich, and Hugues Abriel, a professor at the Department of Clinical Research at the University of Bern, the researchers have now combined this technique with an atomic force microscope. A sensor tip is seated on a movable mount - a so called cantilever - to scan the surface of the microscopic object.

Several years ago, the researchers succeeded in producing sensor tips with an internal channel, which allows the computer-controlled injection of molecules into a cell. This technique is now being marketed by the ETH spin-off Cytosurge. However, the scientists continued development of this technique by fitting the micro-injection needle with an electrode to carry out patch-clamp measurements. The researchers have now published the successful results of this venture in the journal Nano Letters.

The patch-clamp technique is not only a central method for basic research in cell biology, it is also used routinely in the development of new drugs. For example, the pharmaceutical industry is legally required as part of the approval process for new drugs to test whether these drugs interact with ion channels. A drug that blocks ion channels may cause severe cardiac dysrhythmia in patients, which should be avoided at all costs.

Longer measurements and automation possible

In the case of the conventional patch-clamp technique, an operator manually positions the pipette against the cell; although automated procedures exists, their applications are limited. Thus, the cells under test must have the same size and shape and must not move (as cardiac cells do).

In the case of the new method, the micro-needle is controlled by a computer using force measurements from the atomic force microscope to hold it at a constant short distance from the cell surface. "This makes the contact between the needle and cell much more stable, which allows us to take measurements over a longer period of time and even test moving cells," explains Zambelli. For the first time, researchers have thus succeeded in measuring electric potential changes in the ion channels of beating cardiac cells. Zambelli says he can also imagine using this as a foundation for development of an automated method for testing any cell, regardless of its shape or size.

###

Literature reference

Ossola D, Amarouch MY, Behr P, Vörös J, Abriel H, Zambelli T: Force-Controlled Patch Clamp of Beating Cardiac Cells. Nano Letters 2015, doi: 10.1021/nl504438z

Media Contact

Tomaso Zambelli
zambelli@biomed.ee.ethz.ch
41-446-324-575

 @ETH_en

http://www.ethz.ch/index_EN 

Tomaso Zambelli | EurekAlert!

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>