Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt research unlocks molecular key to animal evolution and disease

19.04.2017

The dawn of the Animal Kingdom began with a collagen scaffold that enabled the organization of cells into tissues.

This key innovation, which made possible the rich diversity of life on earth, is found in the most ancient of currently living animals - the ctenophore, Vanderbilt University Medical Center scientists report today in the online journal eLife.


The comb jelly, or ctenophore, is an ancient marine invertebrate that may be the key to understanding the transition from single-celled to multicellular animals and the evolution of tissues, Vanderbilt University researchers reported this week.

Photo courtesy of Alexander Semenov

Ctenophores, commonly called comb jellies, are marine invertebrates known for their translucent, globe-like bodies that refract light into dazzling rainbow-like colors.

They have one thing in common with all animals - rope-like collagen IV molecules that assemble into scaffolds outside of the cell. These "smart" scaffolds are the fundamental architectural unit of the basement membrane, which, in turn, connects cells, provides strength to tissues and transmits information that influences how cells behave

Understanding how collagen IV scaffolds bridged the transition from unicellular to multicellular animal life sheds light on diseases as diverse as kidney failure and cancer, said senior author Billy Hudson, Ph.D., the Elliott V. Newman Professor of Medicine at Vanderbilt University School of Medicine.

"The fundamental principles of tissue development are present in ancient animals," Hudson said. "You can study them in a very simple way. It sets us up to develop a deeper understanding of tissue biology and the cause of a multitude of diseases."

The search for the evolutionary beginning of collagen IV scaffolds began in the Hudson lab in 2009 with help from high school students and college undergraduates who participated in the AspirnautTM summer research program. The team analyzed tissues from creatures as ancient as sponges and comb jellies.

"We found that among all the collagens that make up the human body, collagen IV was the key innovation enabling single-celled organisms to evolve into multicellular animals," said first author Aaron Fidler, a graduate student mentored by Hudson.

Fidler, who will defend his Ph.D. dissertation this summer, described collagen IV as a kind of molecular "glue" that ultimately enabled the formation of tissues and organs.

"Our findings pose questions about how collagen IV glues cells together, and how information is stored in the rope-like scaffolds to influence cell behavior," Hudson said. "That information is the foundation for understanding defects in disease and development of new therapies."

###

Others contributing to the paper were Antonis Rokas, Ph.D., Julie Hudson, M.D., Jay Jerome, Ph.D., Kyle Brown, Ph.D., Sergei Chetyrkin, Ph.D., Carl Darris, Ph.D., Vadim Pedchenko, Ph.D., and Sergey Budko, Ph.D.

Media Contact

Craig Boerner
craig.boerner@vanderbilt.edu
615-322-4747

http://www.mc.vanderbilt.edu/npa 

Craig Boerner | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>