Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine candidate against MERS coronavirus reveals efficacy in mouse model

10.09.2015

The MERS coronavirus can cause severe, potentially lethal infections in human patients. An authorised vaccine is not available, so far. Researchers at the Paul-Ehrlich-Institut in collaboration with various research groups at the German Center for Infection Research (Deutsches Zentrum für Infektionsforschung (DZIF) have developed a vaccine on the basis of a measles virus vaccine strain. This vaccine is highly immunogenic and challenge experiments indicate protection of vaccinated animals. The Journal of Virology reports on these results in its online edition of 09 September 2015.

During the development of “vaccine platforms” against emerging pathogens such as the MERS coronavirus (MERS CoV), selected genetic sequences of the pathogen are integrated into a vaccine vector, for which extensive clinical experience is available.


Photo taken using transmission electron microscopy (TEM) of released MERS-CoV particles (virions)

Source: National Institute of Allergy and Infectious Diseases (NIAID)

Vaccination with such vectors induces immune response both against the vaccine vector and the pathogen’s antigen, which is encoded in the added genetic sequences. The vector vaccine thus generated can be characterised as a model and platform for other vaccines.

Since the pathogen’s sequence integrated in the vaccine vector can easily be exchanged, other pathogens can be targeted on the basis of this prototypic vector vaccine’s construction. Thereby, the development of a vaccine targeting emerging pathogens during the event of sudden outbreaks of epidemics such as the current Ebola epidemic should be accelerated.

A research team that includes researchers working with Dr Michael Mühlebach at the Paul-Ehrlich-Institut (PEI), head of section “Product Testing of Immunological Medicinal Products for Veterinary Use” of the Division Veterinary Medicine and members of the research group “Oncolytic Measles Viruses and Vaccine Vectors” are currently working on such a vaccine platform.

As vaccine vector or vaccine platform, the scientists are using attenuated measles vaccine viruses. Into the genome of this platform those pathogen’s genes are integrated, which shall induce the desired immune responses. The project is part of the German Centre for Infection Research (DZIF) translational unit “Emerging Infections” and is operated in close collaboration with various research groups including that of Professor Stephan Becker, Institute for Virology of Marburg University, and other sections of the Paul-Ehrlich-Institut.

After identifying the MERS-CoV as the causative agent of the mainly respiratory syndrome, which was first described in 2012 in human patients, the development of a vaccine against MERS was started on the basis of measles vaccine viruses in the PEI and the DZIF. For this purpose, the gene encoding the MERS-CoV envelope glycoprotein was inserted into the genome of a measles virus vaccine strain.

The recombinant measles virus-derived vaccine thus modified was characterised and its identity and stability were demonstrated. Using this vaccine, strong immune responses in mice (development of antibodies and T-cell response) were triggered, which protected the immunised animals during infection with MERS-CoV.

“Our data indicate that such recombinant measles viruses are suitable as a platform for developing vaccines against emerging pathogens”, explained Dr Mühlebach. The developed vector vaccine is a promising candidate for a clinical trial on the road towards developing a MERS vaccine.

Previously, members of the DZIF had already participated in the identification of the MERS coronavirus. “This successful research work shows the significance of such research collaborations, which benefit from the expertise of different groups that complement each other. As a result of such work, we hope that when emerging infectious diseases occur, methods for a rapid diagnosis of the disease will be made available ad hoc, thus leading to a quick development of vaccines that effectively combat this disease”, emphasises Professor Klaus Cichutek, president of the Paul-Ehrlich-Institut.

Background on MERS Coronavirus

In 2012, infections with MERS coronavirus (Middle East respiratory syndrome coronavirus) were diagnosed for the first time. In the meantime, more than 1000 infections were confirmed which had their origin in the Arabian Peninsula, above all, Saudi Arabia. Most recently, South Korea has been affected, where the outbreak has been brought under control in the meantime.

Most of the infections were probably transmitted by camels, but transmissions from human to human are also possible. In human patients, the virus causes severe infections with flu-like symptoms and frequently occurring pneumonia as well as breathing difficulties. Other symptoms include diarrhoea and severe courses of acute kidney failure. The disease takes a lethal course in around 30 percent of the cases. An authorised vaccine is so far not available. Currently, symptomatic treatment is the only option.

Original publication

Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D, Beissert T, Bauer S, Hubich-Rau S, Tondera C, Eldin HS, Schmidt J, Vergara-Alert J, Süzer Y, Seifried J, Hanschmann KM, Kalinke U, Herold S, Sahin U, Cichutek K, Waibler Z, Eickmann M, Becker S, Mühlebach MD (2015) A highly immunogenic and protective MERS-Coronavirus vaccine based on recombinant MV vaccine platform. J. Virol 2015 epub ahead of print 10.1128/JVI.01815-15

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2015/09/03/JVI.01815-15.abstract

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>