Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine candidate against MERS coronavirus reveals efficacy in mouse model

10.09.2015

The MERS coronavirus can cause severe, potentially lethal infections in human patients. An authorised vaccine is not available, so far. Researchers at the Paul-Ehrlich-Institut in collaboration with various research groups at the German Center for Infection Research (Deutsches Zentrum für Infektionsforschung (DZIF) have developed a vaccine on the basis of a measles virus vaccine strain. This vaccine is highly immunogenic and challenge experiments indicate protection of vaccinated animals. The Journal of Virology reports on these results in its online edition of 09 September 2015.

During the development of “vaccine platforms” against emerging pathogens such as the MERS coronavirus (MERS CoV), selected genetic sequences of the pathogen are integrated into a vaccine vector, for which extensive clinical experience is available.


Photo taken using transmission electron microscopy (TEM) of released MERS-CoV particles (virions)

Source: National Institute of Allergy and Infectious Diseases (NIAID)

Vaccination with such vectors induces immune response both against the vaccine vector and the pathogen’s antigen, which is encoded in the added genetic sequences. The vector vaccine thus generated can be characterised as a model and platform for other vaccines.

Since the pathogen’s sequence integrated in the vaccine vector can easily be exchanged, other pathogens can be targeted on the basis of this prototypic vector vaccine’s construction. Thereby, the development of a vaccine targeting emerging pathogens during the event of sudden outbreaks of epidemics such as the current Ebola epidemic should be accelerated.

A research team that includes researchers working with Dr Michael Mühlebach at the Paul-Ehrlich-Institut (PEI), head of section “Product Testing of Immunological Medicinal Products for Veterinary Use” of the Division Veterinary Medicine and members of the research group “Oncolytic Measles Viruses and Vaccine Vectors” are currently working on such a vaccine platform.

As vaccine vector or vaccine platform, the scientists are using attenuated measles vaccine viruses. Into the genome of this platform those pathogen’s genes are integrated, which shall induce the desired immune responses. The project is part of the German Centre for Infection Research (DZIF) translational unit “Emerging Infections” and is operated in close collaboration with various research groups including that of Professor Stephan Becker, Institute for Virology of Marburg University, and other sections of the Paul-Ehrlich-Institut.

After identifying the MERS-CoV as the causative agent of the mainly respiratory syndrome, which was first described in 2012 in human patients, the development of a vaccine against MERS was started on the basis of measles vaccine viruses in the PEI and the DZIF. For this purpose, the gene encoding the MERS-CoV envelope glycoprotein was inserted into the genome of a measles virus vaccine strain.

The recombinant measles virus-derived vaccine thus modified was characterised and its identity and stability were demonstrated. Using this vaccine, strong immune responses in mice (development of antibodies and T-cell response) were triggered, which protected the immunised animals during infection with MERS-CoV.

“Our data indicate that such recombinant measles viruses are suitable as a platform for developing vaccines against emerging pathogens”, explained Dr Mühlebach. The developed vector vaccine is a promising candidate for a clinical trial on the road towards developing a MERS vaccine.

Previously, members of the DZIF had already participated in the identification of the MERS coronavirus. “This successful research work shows the significance of such research collaborations, which benefit from the expertise of different groups that complement each other. As a result of such work, we hope that when emerging infectious diseases occur, methods for a rapid diagnosis of the disease will be made available ad hoc, thus leading to a quick development of vaccines that effectively combat this disease”, emphasises Professor Klaus Cichutek, president of the Paul-Ehrlich-Institut.

Background on MERS Coronavirus

In 2012, infections with MERS coronavirus (Middle East respiratory syndrome coronavirus) were diagnosed for the first time. In the meantime, more than 1000 infections were confirmed which had their origin in the Arabian Peninsula, above all, Saudi Arabia. Most recently, South Korea has been affected, where the outbreak has been brought under control in the meantime.

Most of the infections were probably transmitted by camels, but transmissions from human to human are also possible. In human patients, the virus causes severe infections with flu-like symptoms and frequently occurring pneumonia as well as breathing difficulties. Other symptoms include diarrhoea and severe courses of acute kidney failure. The disease takes a lethal course in around 30 percent of the cases. An authorised vaccine is so far not available. Currently, symptomatic treatment is the only option.

Original publication

Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D, Beissert T, Bauer S, Hubich-Rau S, Tondera C, Eldin HS, Schmidt J, Vergara-Alert J, Süzer Y, Seifried J, Hanschmann KM, Kalinke U, Herold S, Sahin U, Cichutek K, Waibler Z, Eickmann M, Becker S, Mühlebach MD (2015) A highly immunogenic and protective MERS-Coronavirus vaccine based on recombinant MV vaccine platform. J. Virol 2015 epub ahead of print 10.1128/JVI.01815-15

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://jvi.asm.org/content/early/2015/09/03/JVI.01815-15.abstract

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>