Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UZH scientists predict activity of human genes

18.12.2015

Genetically identical sibling cells do not always behave the same way. So far this has been attributed to random molecular reactions. Now systems biologists of the University of Zurich have discovered an overlooked consequence of the spatial separation of cells into a nucleus and a cytoplasm. Building on top of this insight they could predict with supercomputers the activity of genes in individual human cells.

Genetically identical cells do not always behave the same way. According to the accepted theory, the reason are random molecular processes – known as random noise. For decades this view has been underpinned by numerous experiments and theoretical models.

Now the system biologists of the University of Zurich have made a momentous discovery: The spatial separation of human cells into a nucleus and cytoplasm creates some kind of passive filter. This filter suppresses the random noise and enables human cells to precisely regulate the activity of individual genes.

Observed more randomness in the nucleus

While the observations of Lucas Pelkmans and his team initially seemed at odds with current text-book knowledge, a second look revealed the missing explanation. During the activation of genes, the genetic information, which has been stored in DNA, becomes transcribed to messenger RNA.

“We could perfectly predict the messenger RNA in the cytoplasm and discovered much more randomness within the nucleus” explains Nico Battich, coauthor and PhD student at Institute of Molecular Biology. “One could envision the nucleus to act as a leaky bucket that on the one hand withholds messenger RNA, but on the other hand enables a delayed and even outflow. Thus the activity of genes in the cytoplasm becomes highly robust against random noise during the formation of messenger RNA in the nucleus.”

Smallest physiological details made visible

Thanks to their novel method, the Zurich scientists were the first ones who could study that many human genes. They managed to detect every single molecule that is produced by active genes. ”Previously one could only study few genes and in many cases these genes had to be genetically modified by researchers” says PhD student Thomas Stoeger.

“We realized that the activity of genes strongly differed between single cells, but could at the same time predict the activity for every single cell by visualizing subtle physiological details with microscopic dyes.”

The findings of the Zurich scientists impact several fields. “For example, evolutionary biology, where the spatial separation of cells marks a milestone in the emergence of intelligent life. But also biotechnology, where a precise control over artificial genes is desirable, and human medicine, if it should become possible to predict which malignant cells will respond to drugs.” concludes Prof. Lucas Pelkmans.

Literature:
Nico Battich, Thomas Stoeger, Lucas Pelkmans. Control of Transcript Variability in Single Mammalian Cells. Cell. December x, 2015. Doi: 10.1016/j.cell.2015.11.018

Contact:
Prof. Lucas Pelkmans
Institute of Molecular Life Sciences
University of Zurich
Phone +41 44 635 31 23
E-mail: lucas.pelkmans@imls.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/index_en.html

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>