Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Light To Control Protein Transport From Cell Nucleus

16.02.2016

Heidelberg researchers use light-sensitive, genetically modified protein

Light can be used to control the transport of proteins from the cell nucleus with the aid of a light-sensitive, genetically modified plant protein. Biologists from Heidelberg University and the German Cancer Research Center (DKFZ) working in the field of optogenetics have now developed such a tool.


Source: Dominik Niopek

Microscopy images of human embryonic kidney cells in culture. The cells were genetically modified to produce a glowing protein, which was linked to the new optogenetic tool (the LOV2-NES hybrid). Cells irradiated with a blue laser beam (blue arrows) show an efficient nuclear export of the protein. Non-irradiated cells (red arrows) show a constitutively nuclear localisation of the protein.

The researchers, under the direction of Dr. Barbara Di Ventura and Prof. Dr. Roland Eils, employed methods from synthetic biology and combined a light sensor from the oat plant with a transport signal. This makes it possible to use external light to precisely control the location and hence the activity of proteins in mammalian cells. The results of this research were published in the journal “Nature Communications”.

Eukaryotic cells are characterised by the spatial separation between the cell nucleus and the rest of the cell. “This subdivision protects the mechanisms involved in copying and reading genetic information from disruptions caused by other cellular processes such as protein synthesis or energy production,” explains Prof. Eils, Director of Heidelberg University's BioQuant Centre and head of the Bioinformatics Department at Ruperto Carola and the DKFZ. Proteins and other macromolecules pass through the nuclear pore complex into and out of the cell nucleus in order to control a number of biological processes.

While smaller proteins passively diffuse through the nuclear pores, larger particles must latch onto so-called carrier proteins to make the trip. Usually short peptides on the protein surface signal the carriers that the protein is ready for transport.

This signal is known as the nuclear localization signal (NLS) for transport into the nucleus, and the nuclear export sequence (NES) for transport out of the nucleus. “Artificially inducing the import or export of selected proteins would allow us to control their activities in the living cell,” says Dr. Di Ventura, group leader in Prof. Eils' department.

The Di Ventura lab has specialised in optogenetics, a relatively new field of research in synthetic biology. Optogenetics combines the methods of optics and genetics with the goal of using light to turn certain functions in living cells on and off. To this end, light-sensitive proteins are genetically modified and then introduced into specific target cells, making it possible to control their behaviour using light.

The recently published work reporting an optogenetic export system builds upon previous studies by other working groups investigating the LOV2 domain, which originally comes from the oat plant. In nature, this domain acts as a light sensor and, among other things, assists the plant in orienting to sunlight. The LOV2 domain fundamentally changes its three-dimensional structure as soon as it comes into contact with blue light, explains Dominik Niopek, primary author of the study.

The property of light-induced structure change can now be used specifically to synthetically control cellular signal sequences – like the nuclear export signal (NES). Dominik Niopek first developed a hybrid LOV2-NES protein made up of the LOV2 domain of the oat and a synthetic nuclear export signal. In the dark state, the signal is hidden in the LOV2 domain and not visible to the cell. Light causes the structure of the LOV2 to change, which renders the NES visible and triggers the export of the LOV2 domain from the nucleus.

“In principle, the hybrid LOV2-NES protein can be attached to any cellular protein and used to control its export from the nucleus using light,” says Prof. Eils. The researcher and his team demonstrated this using the p53 protein, a member of the family of cancer-suppressing proteins that monitor cell growth and prevent genetic defects during cell division. According to Roland Eils, p53 is switched off in a number of aggressive tumours by harmful genetic mutations that allow the tumour cells to reproduce uncontrollably.

Using the LOV2-NES protein, the Heidelberg researchers were able to control the export of p53 from the nucleus using light to control its gene regulatory functions. “This new ability to directly control p53 in living mammalian cells has far-reaching potential to explain its complex function in depth. We hope to uncover new clues about the role of possible defects in p53 regulation related to the development of cancer,“ says Dr. Di Ventura.

The researchers are convinced that their new optogenetic tool can also be used to make important discoveries on the dynamics of protein transport and its influence on cell behaviour. “Our research is only as good as our tools,“ says Prof. Eils. “The development of innovative molecular tools is therefore the key to understanding basic cellular functions as well as the mechanisms that cause illness.“

Original publication:
D. Niopek, P. Wehler, J. Roensch, R. Eils and B. Di Ventura: Optogenetic control of nuclear protein export. Nature Communications (published online 8 February 2016). doi: 10.1038/NCOMMS10624

Contact:
Prof. Dr. Roland Eils
Heidelberg University – Institute of Pharmacy and Molecular Biology
German Cancer Research Center
Phone +49 6221 54-51290 (University) and 42-3600 (DKFZ)
r.eils@dkfz-Heidelberg.de

Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://Roland Eils' department – http://ibios.dkfz.de/tbi

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Nucleus cell nucleus light sensor mammalian cells p53 proteins synthetic synthetic biology

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>