Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using “big data” to fight flu

10.12.2015

Thanks to “big data”, researchers have identified new molecules that are instrumental in the replication of the flu virus. If these host proteins are blocked, influenza viruses are unable to multiply as effectively. The international study therefore makes a significant contribution towards the development of new treatments and flu drugs.

Flu epidemics occur almost every year. Sometimes, novel virus strains can even spread into global pandemics. In recent years, influenza A viruses (IAV) have been discovered that are resistant to the drugs available to treat flu, which can result in patients not responding to the medication.


The replication of influenza A viruses (IAV) can be stopped thanks to "big data".

(Image: fotoliaxrender)

The flu is triggered by infections with influenza viruses, which multiply heavily in the respiratory tract. In order to replicate within the cells of the respiratory tract, the viruses rely on host molecules. In recent years, there have thus been attempts to identify and block key host molecules for this process in order to stop the virus in its tracks.

Inhibition of host proteins curbs viral growth

An international study, in which the University of Zurich is involved, also pursues this approach. The research teams from Switzerland, Germany and the USA analyzed datasets from independent publications on IAV host molecules. These studies focus on the totality of the genes (“GenOMICs”) and proteins (ProteOMICs”) required for the virus and generate a vast quantity of data. Thanks to the comprehensive analysis of these “OMIC” databases, 20 previously unknown host molecules that promote the growth of influenza A viruses have been discovered.

“These unchangeable host proteins are vital for the replication of the viruses,” explains Professor Silke Stertz from the Institute of Medical Virology at the University of Zurich. “We can now use these to stop the virus from spreading further.” One of these host proteins is UBR4, which the virus needs to transport viral proteins to the cell membrane and construct new particles. This takes place as follows: The influenza A virus invades the host cell. The viral components are then carried to the cell surface, where they form new viruses. Consequently, as many as 20,000 new influenza viruses can develop from one, single infected host cell.

The study reveals that blocking UBR4 inhibits the production of new virus particles in infected cells. In mice, for instance, the IAV replication could be weakened and the progress of the disease slowed. The study therefore provides evidence that blocking host molecules is feasible as a therapeutic strategy for the treatment of influenza.

Public web portal supports drug development

The research team created a simplified, user-friendly web portal (www.metascape.org/IAV) on influenza and host interaction. The site is also accessible to other researchers, enables individual requests and provides analysis tools to trace host proteins that are probably involved in the flu infection. As a result, the data published may help develop the next generation of influenza medication.

“We expect the approach described in this study and the use of ‘big data’ to bridge the gap between biomedical research and therapeutic development, and facilitate fresh insights into previously unanswered medical questions,” says co-author Sumit Chanda from Sanford Burnham Prebys Medical Discovery Institute (SBP) in California.

Literature:
Shashank Tripathi, Marie O. Pohl, ….,Silke Stertz et al.: Meta- and Orthogonal Integration of Influenza 'OMICs' Data Reveals UBR4 as a Critical Regulator of M2 Ion Channel Membrane Trafficking. Cell Host & Microbe, December 9, 2015.

Contacts:
Marie-Theres Pohl
Institute of Medical Virology
University of Zurich
Email: pohl.marie-theres@virology.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>