Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using “big data” to fight flu


Thanks to “big data”, researchers have identified new molecules that are instrumental in the replication of the flu virus. If these host proteins are blocked, influenza viruses are unable to multiply as effectively. The international study therefore makes a significant contribution towards the development of new treatments and flu drugs.

Flu epidemics occur almost every year. Sometimes, novel virus strains can even spread into global pandemics. In recent years, influenza A viruses (IAV) have been discovered that are resistant to the drugs available to treat flu, which can result in patients not responding to the medication.

The replication of influenza A viruses (IAV) can be stopped thanks to "big data".

(Image: fotoliaxrender)

The flu is triggered by infections with influenza viruses, which multiply heavily in the respiratory tract. In order to replicate within the cells of the respiratory tract, the viruses rely on host molecules. In recent years, there have thus been attempts to identify and block key host molecules for this process in order to stop the virus in its tracks.

Inhibition of host proteins curbs viral growth

An international study, in which the University of Zurich is involved, also pursues this approach. The research teams from Switzerland, Germany and the USA analyzed datasets from independent publications on IAV host molecules. These studies focus on the totality of the genes (“GenOMICs”) and proteins (ProteOMICs”) required for the virus and generate a vast quantity of data. Thanks to the comprehensive analysis of these “OMIC” databases, 20 previously unknown host molecules that promote the growth of influenza A viruses have been discovered.

“These unchangeable host proteins are vital for the replication of the viruses,” explains Professor Silke Stertz from the Institute of Medical Virology at the University of Zurich. “We can now use these to stop the virus from spreading further.” One of these host proteins is UBR4, which the virus needs to transport viral proteins to the cell membrane and construct new particles. This takes place as follows: The influenza A virus invades the host cell. The viral components are then carried to the cell surface, where they form new viruses. Consequently, as many as 20,000 new influenza viruses can develop from one, single infected host cell.

The study reveals that blocking UBR4 inhibits the production of new virus particles in infected cells. In mice, for instance, the IAV replication could be weakened and the progress of the disease slowed. The study therefore provides evidence that blocking host molecules is feasible as a therapeutic strategy for the treatment of influenza.

Public web portal supports drug development

The research team created a simplified, user-friendly web portal ( on influenza and host interaction. The site is also accessible to other researchers, enables individual requests and provides analysis tools to trace host proteins that are probably involved in the flu infection. As a result, the data published may help develop the next generation of influenza medication.

“We expect the approach described in this study and the use of ‘big data’ to bridge the gap between biomedical research and therapeutic development, and facilitate fresh insights into previously unanswered medical questions,” says co-author Sumit Chanda from Sanford Burnham Prebys Medical Discovery Institute (SBP) in California.

Shashank Tripathi, Marie O. Pohl, ….,Silke Stertz et al.: Meta- and Orthogonal Integration of Influenza 'OMICs' Data Reveals UBR4 as a Critical Regulator of M2 Ion Channel Membrane Trafficking. Cell Host & Microbe, December 9, 2015.

Marie-Theres Pohl
Institute of Medical Virology
University of Zurich

Weitere Informationen:

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>