Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urinary tract infection: How bacteria nestle in

07.03.2016

Almost every second woman suffers from a bladder infection at some point in her life. Also men are affected by cystitis, though less frequently. In eighty percent of the cases, it is caused by the intestinal bacterium E. coli. It travels along the urethra to the bladder where it triggers painful infections. In “Nature Communications” researchers from the University of Basel and the ETH Zurich explain how this bacterium attaches to the surface of the urinary tract via a protein with a sophisticated locking technique, which prevents it from being flushed out by the urine flow.

Many women have already experienced how painful a bladder infection can be: a burning pain during urination and a constant urge to urinate are the typical symptoms. The main cause of recurrent urinary tract infections is a bacterium found in the normal flora of the intestine, Escherichia coli. The bacteria enter the urinary tract, attach to the surface and cause inflammation.


Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract.

Maximilian Sauer, ETH Zürich

The teams of Prof. Timm Maier at the Biozentrum and Prof. Beat Ernst at the Pharmazentrum of the University of Basel, along with Prof. Rudolf Glockshuber from the Institute of Molecular Biology and Biophysics at the ETH Zurich, have now discovered how bacteria adhere to the urinary tract under urine flow via the protein FimH and subsequently travel up the urethra.

Intestinal bacterium adheres to the cell surfaces with the protein FimH

The pathogen has long, hairlike appendages with the protein FimH at its tip, forming a tiny hook. This protein, which adheres to sugar structures on the cell surface, has a special property: It binds more tightly to the cell surface of the urinary tract the more it is pulled. As strong tensile forces develop during urination, FimH can protect the bacterium from being flushed out.

“Through the combination of several biophysical and biochemical methods, we have been able to elucidate the binding behavior of FimH in more detail than ever before”, says Glockshuber. In their study, the scientists have demonstrated how mechanical forces control the binding strength of FimH.

“The protein FimH is composed of two parts, of which the second non-sugar binding part regulates how tightly the first part binds to the sugar molecule“, explains Maier. “When the force of the urine stream pulls apart the two protein domains, the sugar binding site snaps shut. However, when the tensile force subsides, the binding pocket reopens. Now the bacteria can detach and swim upstream the urethra.”

Drugs against FimH to combat urinary tract infections

Urinary tract infections are the second most common reason for prescribing antibiotics. Yet, in times of increasing antibiotic resistance, the focus moves increasingly to finding alternative forms of treatment. For the prevention and therapy of E. coli infections, drugs that could prevent the initial FimH attachment of the bacteria to the urinary tract could prove to be a suitable alternative, as this would make the use of antibiotics often unnecessary.

This opens up the possibility of reducing the use of antibiotics and thus preventing the further development of resistance. Prof. Ernst, from the Pharmazentrum of the University of Basel, has been working intensively on the development of FimH antagonists for many years. The elucidation of the FimH mechanism supports these efforts and will greatly contribute to the identification of a suitable drug.

Original article
Maximilian M. Sauer, Roman P. Jakob, Jonathan Eras, Sefer Baday, Deniz Eriş, Giulio Navarra, Simon Bernèche, Beat Ernst, Timm Maier, Rudi Glockshuber
Catch-bond mechanism of the bacterial adhesin FimH
Nature Communications (2016), doi: 10.1038/ncomms10738

Further information
Prof. Dr. Timm Maier, University of Basel, Biozentrum, tel. +41 61 267 21 76, email:: timm.maier@unibas.ch
Prof. Dr. Rudolf Glockshuber, ETH Zürich, Institute of Molecular Biology & Biophysics, tel. +41 44 633 68 19, email: rudi@mol.biol.ethz.ch
Dr. Katrin Bühler, University of Basel, Biozentrum, Communications, tel. +41 61 267 09 74, email: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Urinary-tract-infection-H...

Katrin Bühler | Universität Basel

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>