Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urinary tract infection: How bacteria nestle in

07.03.2016

Almost every second woman suffers from a bladder infection at some point in her life. Also men are affected by cystitis, though less frequently. In eighty percent of the cases, it is caused by the intestinal bacterium E. coli. It travels along the urethra to the bladder where it triggers painful infections. In “Nature Communications” researchers from the University of Basel and the ETH Zurich explain how this bacterium attaches to the surface of the urinary tract via a protein with a sophisticated locking technique, which prevents it from being flushed out by the urine flow.

Many women have already experienced how painful a bladder infection can be: a burning pain during urination and a constant urge to urinate are the typical symptoms. The main cause of recurrent urinary tract infections is a bacterium found in the normal flora of the intestine, Escherichia coli. The bacteria enter the urinary tract, attach to the surface and cause inflammation.


Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract.

Maximilian Sauer, ETH Zürich

The teams of Prof. Timm Maier at the Biozentrum and Prof. Beat Ernst at the Pharmazentrum of the University of Basel, along with Prof. Rudolf Glockshuber from the Institute of Molecular Biology and Biophysics at the ETH Zurich, have now discovered how bacteria adhere to the urinary tract under urine flow via the protein FimH and subsequently travel up the urethra.

Intestinal bacterium adheres to the cell surfaces with the protein FimH

The pathogen has long, hairlike appendages with the protein FimH at its tip, forming a tiny hook. This protein, which adheres to sugar structures on the cell surface, has a special property: It binds more tightly to the cell surface of the urinary tract the more it is pulled. As strong tensile forces develop during urination, FimH can protect the bacterium from being flushed out.

“Through the combination of several biophysical and biochemical methods, we have been able to elucidate the binding behavior of FimH in more detail than ever before”, says Glockshuber. In their study, the scientists have demonstrated how mechanical forces control the binding strength of FimH.

“The protein FimH is composed of two parts, of which the second non-sugar binding part regulates how tightly the first part binds to the sugar molecule“, explains Maier. “When the force of the urine stream pulls apart the two protein domains, the sugar binding site snaps shut. However, when the tensile force subsides, the binding pocket reopens. Now the bacteria can detach and swim upstream the urethra.”

Drugs against FimH to combat urinary tract infections

Urinary tract infections are the second most common reason for prescribing antibiotics. Yet, in times of increasing antibiotic resistance, the focus moves increasingly to finding alternative forms of treatment. For the prevention and therapy of E. coli infections, drugs that could prevent the initial FimH attachment of the bacteria to the urinary tract could prove to be a suitable alternative, as this would make the use of antibiotics often unnecessary.

This opens up the possibility of reducing the use of antibiotics and thus preventing the further development of resistance. Prof. Ernst, from the Pharmazentrum of the University of Basel, has been working intensively on the development of FimH antagonists for many years. The elucidation of the FimH mechanism supports these efforts and will greatly contribute to the identification of a suitable drug.

Original article
Maximilian M. Sauer, Roman P. Jakob, Jonathan Eras, Sefer Baday, Deniz Eriş, Giulio Navarra, Simon Bernèche, Beat Ernst, Timm Maier, Rudi Glockshuber
Catch-bond mechanism of the bacterial adhesin FimH
Nature Communications (2016), doi: 10.1038/ncomms10738

Further information
Prof. Dr. Timm Maier, University of Basel, Biozentrum, tel. +41 61 267 21 76, email:: timm.maier@unibas.ch
Prof. Dr. Rudolf Glockshuber, ETH Zürich, Institute of Molecular Biology & Biophysics, tel. +41 44 633 68 19, email: rudi@mol.biol.ethz.ch
Dr. Katrin Bühler, University of Basel, Biozentrum, Communications, tel. +41 61 267 09 74, email: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Urinary-tract-infection-H...

Katrin Bühler | Universität Basel

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>