Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Up, up and away: USU chemists say 'yes,' helium can form compounds

07.02.2017

Helium and sodium form stable compound at high pressure

Can helium bond with other elements to form a stable compound? Students attentive to Utah State University professor Alex Boldyrev's introductory chemistry lectures would immediately respond "no." And they'd be correct - if the scholars are standing on the Earth's surface.


Ball-and-stick representation, left, and polyhedral representation, right, of chemical bonding analysis of the Na2He structure, where half of the Na8 cubes are occupied by He atoms (shown as polyhedra) and half by two electrons (shown as red spheres.). Pink and gray atoms represent Na and He, respectively.

Credit: Ivan Popov/Utah State University


An international group of scientists, including chemists from Utah State University, report helium can bond with sodium at high pressure. Here, an 8c-2e bond is found inside every empty Na8 cube of the Na2He structure. For clarity, only two such bonds are shown.

Credit: Ivan Popov/Utah State University

But all bets are off, if the students journey to the center of the Earth, à la Jules Verne's Otto Lidenbrock or if they venture to one of the solar system's large planets, such as Jupiter or Saturn.

"That's because extremely high pressure, like that found at the Earth's core or giant neighbors, completely alters helium's chemistry," says Boldyrev, faculty member in USU's Department of Chemistry and Biochemistry.

It's a surprising finding, he says, because, on Earth, helium is a chemically inert and unreactive compound that eschews connections with other elements and compounds. The first of the noble gases, helium features an extremely stable, closed-shell electronic configuration, leaving no openings for connections.

Further, Boldyrev's colleagues confirmed computationally and experimentally that sodium, never an earthly comrade to helium, readily bonds with the standoffish gas under high pressure to form the curious Na2He compound. These findings were so unexpected, Boldyrev says, that he and colleagues struggled for more than two years to convince science reviewers and editors to publish their results.

Persistence paid off. Boldyrev and his doctoral student Ivan Popov, as members of an international research group led by Artem Oganov of Stony Brook University, published the pioneering findings in the Feb. 6, 2017, issue of Nature Chemistry [DOI: 10.1038/NCHEM.2716.]

Additional authors on the paper include researchers from China's Nankai University, Center for High Pressure Science and Technology, Chinese Academy of Sciences, Northwestern Polytechnical University, Xi'an and Nanjing University; Russia's Skolkovo Institute of Science and Technology, Moscow Institute of Physics and Technology, Sobolev Institute of Geology and Mineralogy and RUDN University; the Carnegie Institution of Washington, Lawrence Livermore National Laboratory, Italy's University of Milan, the University of Chicago and Germany's Aachen University and Photo Science DESY.

Boldyrev and Popov's role in the project was to interpret a chemical bonding in the computational model developed by Oganov and the experimental results generated by Carnegie's Alexander Goncharov. Initially, the Na2He compound was found to consist of Na8 cubes, of which half were occupied by helium atoms and half were empty.

"Yet, when we performed chemical bonding analysis of these structures, we found each 'empty' cube actually contained an eight-center, two-electron bond," Boldyrev says. "This bond is what's responsible for the stability of this enchanting compound."

Their findings advanced the research to another step.

"As we explore the structure of this compound, we're deciphering how this bond occurs and we predicted that, adding oxygen, we could create a similar compound," Popov says.

Such knowledge raises big questions about chemistry and how elements behave beyond the world we know. Questions, Boldyrev says, Earth's inhabitants need to keep in mind as they consider long-term space travel.

"With the recent discovery of multiple exoplanets, we're reminded of the vastness of the universe," he says. "Our understanding of chemistry has to change and expand beyond the confines of our own planet."

Media Contact

Alexander Boldyrev
a.i.boldyrev@usu.edu
435-797-1630

http://www.usu.edu 

Alexander Boldyrev | EurekAlert!

Further reports about: chemical bonding helium atoms noble gases space travel

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>