Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unsuspected gene found frequently mutated in colorectal, endometrial cancers

27.10.2014

Mutation might make tumors sensitive to new cancer drugs

Scientists say they have identified in about 20 percent of colorectal and endometrial cancers a genetic mutation that had been overlooked in recent large, comprehensive gene searches. With this discovery, the altered gene, called RNF43, now ranks as one of the most common mutations in the two cancer types.

Reporting in the October 26, 2014 edition of Nature Genetics, investigators from Dana-Farber Cancer Institute and the Broad Institute of MIT and Harvard said the mutated gene helps control an important cell-signaling pathway, Wnt, that has been implicated in many forms of cancer. They suggest that the RNF43 mutation may serve as a biomarker that identifies patients with colorectal and endometrial cancer who could benefit from precision cancer drugs that target the Wnt pathway, although no such drugs are currently available.

"Tumors that have this mutation may be telling us that they are dependent on the Wnt signaling pathway, and they will be uniquely sensitive to drugs that inhibit this pathway," said Charles Fuchs, MD, MPH, an author of the paper and director of the Center for Gastrointestinal Cancer at Dana-Farber. He is also affiliated with Brigham and Women's Hospital and the Harvard School of Public Health.

In animal models of cancer, tumors that harbor RNF43 mutations have been found to be sensitive to new Wnt pathway inhibitors that are now in clinical trials in humans, according to Marios Giannakis, MD, PhD, who is affiliated with Dana-Farber and is also a postdoctoral researcher at the Broad Institute.

The researchers were surprised to find RNF43 mutations in such a significant proportion of colorectal and endometrial cancers because they had not been detected in recent comprehensive searches of tumor DNA conducted by scientists of The Cancer Genome Atlas (TGCA) project.

Authors of the new study believe computer algorithms used by TCGA to parse data from DNA sequencing of tumors may have interpreted the "signal" of the RNF45 mutation as an artifact, and discarded it, much as a legitimate email will sometimes be trapped in a junk filter.

"These mutations occur in repetitive regions of the genome where you often have errors in DNA sequencing, so the algorithm may have been more likely to assume that the RNF43 mutation was an artifact of the sequencing process," explained Eran Hodis, an MD/PhD student at Harvard Medical School and MIT and also affiliated with the Broad and Dana-Farber. Giannakis and Hodis are co-first authors on the new report.

Other frequently mutated genes in colorectal cancer include APC (73 percent), P53 (50 percent), and KRAS (40 percent).

The new evidence for RNF45 mutations first came from analysis of tumor samples of colorectal cancer that were obtained from two large cohort studies – the Nurses' Health Study, which has been following 121,000 healthy women since 1976, and the Health Professionals Follow-up Study, which includes 52,000 men enrolled in 1986. About 10 years ago, Fuchs, along with Dana-Farber pathologist Shugi Ogino, MD, PhD, MS, began collecting and studying gastrointestinal tumor samples that had been taken from men and women in the studies who developed cancer. Because these specimens are accompanied by a wealth of data about the patients' lifestyle, medical history, and other factors, Fuchs calls this collection of tumor samples "a gold mine."

For the new study, 185 colorectal cancer specimens from this collection were analyzed by whole-exome DNA sequencing at the Broad Institute under the leadership of Levi Garraway, MD, PhD, who is affiliated with Dana-Farber, the Broad, and Brigham and Women's Hospital, and is corresponding author of the report. The RNF43 mutation was identified in 18.9 percent of the colorectal tumors.

This surprising result prompted the investigators to re-analyze 222 colorectal cancer samples from TCGA project and found the RNF43 mutation in 17.6 percent. The researchers, noting that endometrial cancer is dependent on abnormal Wnt signaling, then re-analyzed 248 DNA samples from endometrial cancer that had been previously analyzed by TCGA scientist. They found a strikingly similar proportion – 18.1 percent – of RNF43 mutations in those cancers. The scientists predict they will find the mutation in stomach cancers as well, which also are driven by abnormal Wnt signaling.

The study authors noted that the discovery of such a significant cancer mutation that hadn't been picked up in the previous gene hunts shows that carrying out these comprehensive genomic searches continues to have value.

###

Important Points

  • Discovery shows comprehensive genomic searches continue to have value 
  • Altered gene now ranks as one of the most common mutations in two cancer types

     

The National Institutes of Health provided research funding under grants U54HG003067, K07CA190673, P01 CA87969, UM1 CA167552, R01 CA151993, R01 CA118553, R01 CA168141, and P50 CA127003. The Paula and Russell Agrusa Fund for Colorectal Cancer Research, the 2014 Colon Cancer Alliance-AACR Fellowship for Biomarker Research, the Perry S. Levy Endowed Fellowship and the Herchel Smith Fellowship also supported and provided funding for this study.

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute, a principal teaching affiliate of Harvard Medical School, is world renowned for its leadership in adult and pediatric cancer treatment and research. Designated as a comprehensive cancer center by the National Cancer Institute (NCI), it is one of the largest recipients among independent hospitals of NCI and National Institutes of Health grant funding.

Anne Doerr | Eurek Alert!
Further information:
http://www.dana-farber.org/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>