Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling Relativistic Effects in the Heaviest Actinide Element

09.04.2015

The first-time measurement of the first ionization potential of lawrencium (element 103)

An international collaboration led by the research group of superheavy elements at the Japan Atomic Energy Agency (JAEA), Tokai, Japan has achieved the ionization potential measurement of lawrencium (element 103) with a novel-type technique at the JAEA tandem accelerator.


The gray tantalum tube surrounded by two heating elements in the center of the picture is part of the recently developed surface ion source installed in the JAEA-ISOL system in the JAEA tandem accelerator.

photo: Tetsuya K. Sato, JAEA

Based on the empirically developed "actinide concept", and in agreement with theoretical calculations, in today’s Periodic Table the series of actinide elements terminates with element 103, lawrencium (Lr). Now researchers have measured the first ionization potential of Lr, which reflects the binding energy of the most weakly-bound valence electron in lawrencium’s atomic shell.

Effects of relativity strongly affect this energy, and the experimental result is in excellent agreement with a new theoretical calculation, which includes these effects. It was shown that removing the outermost electron requires least energy in Lr among all actinides, as was expected. This validates the position of Lr as the last actinide element and confirms the architecture of the Periodic Table.

Since the introduction of the "actinide concept" as the most dramatic modern revision of the Periodic Table of the Elements by Glenn T. Seaborg in the 1940s, the element with atomic number 103, lawrencium (Lr), played a crucial role as the last element in the actinide series.

This special position turned out to set this element into the focus of questions on the influence of relativistic effects and the determination of properties confirming its position as the last actinide element. Consequently, the quest for data on chemical and physical properties of Lr was driving experimental and theoretical studies.

Two aspects most frequently addressed concerned its ground state electronic configuration and the value of its first ionization potential. As the last element in the actinide series, and similar to lutetium (Lu) as the last element in the lanthanide series, it was expected that Lr has a very low first ionization potential that is strongly influenced by relativistic effects.

However, Lr is only accessible atom-at-a-time in syntheses at heavy-ion accelerators, and only short-lived isotopes are known. Therefore, experimental investigations on Lr are very rare and have so far been limited to a few studies of some basic chemical properties.

In their new work, for which the international research collaboration exploited a novel combination and advancement of methods and techniques, the researchers report on the first and accurate measurement of the first ionization potential of Lr. For the experiment, the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz purified and prepared the exotic target material californium (element 98). The material was converted into a target in Japan and then exposed to a beam of boron ions (element 5).

The experiment was supplemented by theoretical calculations undertaken by scientists at the Helmholtz Institute Mainz (HIM) and at Tel Aviv University of Israel using the most up-to-date quantum chemical methods to quantify the ionization energy. The very good agreement between calculated and experimental result validates the quantum chemical calculations. The experimental technique opens up new perspectives for similar studies of yet more exotic, superheavy elements.

The international team consists of research groups from JAEA, the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz (JGU), Germany, the Helmholtz Institute Mainz (HIM), Germany, the GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany, the European Organization for Nuclear Research (CERN), Geneva, Switzerland, Ibaraki University, Japan, Niigata University, Japan, Hiroshima University, Japan, Massey University, Auckland, New Zealand, and Tel Aviv University, Israel.

The new findings have been presented in the NATURE magazine.

Publication:
Tetsuya K. Sato et al.
Measurement of the first ionization potential of lawrencium, element 103
NATURE 520, 209-211, 9. April 2015
DOI: 10.1038/nature14342
http://www.nature.com/nature/journal/v520/n7546/full/nature14342.html

Illustrations/photos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_01.jpg
The periodic table of elements including in the colored block at the bottom the lanthanides (Ln) and actinides (An). The height of each column indicates the relative first ionization potential of the corresponding element. The result obtained for lawrencium (Lr) is shown by the red column. The binding energy of the least bound valence electron in lawrencium is thus weaker than that in all other actinides and all other lanthanides.
Ill.: Kazuaki Tsukada, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_02.jpg
The ionization energy of heavy lanthanides (black) and actinides (red) with the current result for lawrencium (Lr). The filled circle symbols represent values recorded in experiments, the ring symbols are estimated values. The two values for lawrencium are in excellent agreement, emphasizing the close correspondence between the theoretical expectations and experimental findings.
Ill.: Tetsuya K. Sato, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_03.jpg
The gray tantalum tube surrounded by two heating elements in the center of the picture is part of the recently developed surface ion source installed in the JAEA-ISOL system in the JAEA tandem accelerator.
photo: Tetsuya K. Sato, JAEA

Further information:
Professor Dr. Christoph Düllmann
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25852
fax +49 6131 39-20811
e-mail: duellmann@uni-mainz.de
http://www.kernchemie.uni-mainz.de/eng/index.php

Weitere Informationen:

http://www.nature.com/news/exotic-atom-struggles-to-find-its-place-in-the-period... – NATURE article "Exotic atom struggles to find its place in the periodic table" on the original publication

http://www.nature.com/nature/journal/v520/n7546/full/520166a.html – NATURE News & Views article "Nuclear chemistry: Lawrencium bridges a knowledge gap"

http://www.superheavies.de/ - Superheavy Elements Chemistry Group

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>