Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017

Using a newly developed method researchers at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have been able to shed light on the complexity of genome reorganization occurring during the first hours after fertilization in the single-cell mammalian embryo. Their findings have recently been published in the journal Nature.

Using a newly developed method researchers at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have been able to shed light on the complexity of genome reorganization occurring during the first hours after fertilization in the single-cell mammalian embryo.


Chromatin structures of male and female nuclei are distinct from another and strikingly different from other any other interphase cells. This was observed by Ilya Flyamer, Johanna Gassler, Maxim Imakaev and colleagues using an adapted single-nucleus Hi-C protocol.

Their findings have recently been published in the journal Nature. The team of researchers (from three continents) have discovered that the egg and sperm genomes that co-exist in the single-cell embryo or zygote have a unique structure compared to other interphase cells.

Understanding this specialized chromatin “ground state” has the potential to provide insights into the yet mysterious process of epigenetic reprogramming to totipotency, the ability to give rise to all cell types.

Fusion of the egg and sperm, two highly differentiated cell types, leads to formation of the single-cell embryo or zygote. During the first hours after fertilization, the two separate genomes undergo reprogramming events that presumably function to erase the memory of the differentiated cell type and establish a state of totipotency. The mechanisms underlying totipotency remain poorly understood but are essential for generating a new organism from a fertilized egg.

A major advance in single-cell genomics

After fertilization, maternal and paternal genomes erase some of the epigenetic memory of the previously differentiated states in order to facilitate the beginning of new life as the zygote. In the first cell cycle after fertilization the maternal genome inherited from the oocyte (egg) and the paternal genome provided by sperm exist as separate nuclei in the zygote. The two genomes are marked by distinct epigenetic modifications acquired during reprogramming. Whether the 3D chromatin structure of the maternal and paternal genomes is also distinct was not known.

An international team headed by Kikuë Tachibana-Konwalski from IMBA in collaboration with researchers from the Massachusetts Institute of Technology (MIT) in Boston and the Lomonosov Moscow State University (MSU) aimed to uncover how chromatin structure is reorganized during the mammalian oocyte-to-zygote transition. Using next-generation sequencing, bioinformatics analysis and mathematical modeling performed by Maxim Imakaev in Leonid Mirny’s lab, the researchers identified specific patterns that emerge during genome reorganization in mouse oocytes and zygotes.

The low availability of starting material made it necessary to develop a new single-nucleus Hi-C (snHi-C) method that made it possible to analyze the chromatin architecture in oocytes and single-cell embryos for the first time. Using this method, features of genomic organization including compartments, topologically associating domains (TADs) and chromatin loops were detected in single cells when averaged over the genome.

“Our method allowed us to detect chromatin contacts ten times more efficiently than a previous method. Because of this we were able to find differences in genome folding on the level of single cells: these cell-to-cell variations were missed in conventional Hi-C due to the averaging over millions of cells,” says Ilya Flyamer, former Vienna Biocenter (VBC) summer student and then Master student and one of the first authors of the study.

Contrasting behaviour of maternal and paternal chromatin

“Additionally, we found unique differences in the three-dimensional organization of the zygote’s chromatin compared to other interphase cells. What was even more interesting is that maternal and paternal genomes of the zygote seem to have different organizations within the same cell. It seems like the chromatin architecture is reorganized after fertilization, and that this reorganization happens differentially for the maternal and the paternal genomes,” explained Johanna Gassler, PhD student at IMBA and one of the first authors of the study.

Senior author and IMBA group leader Kikuë Tachibana-Konwalski is fascinated by the secrets of the mammalian oocyte-to-zygote transition and has been studying the miracle of life, and in particular the very first molecular steps, for many years. She also hopes the findings will generate new insights for the emerging field of totipotency.

“To place the power of the zygote into context: Reprogramming to pluripotency by the Yamanaka factors takes several days with limited efficiency, whilst reprogramming to totipotency occurs in the zygote within hours. How this is achieved remains one of the key unknowns in biology. By studying the chromatin state of zygotes, we aim to gain insights into this mechanism, which could also have applications for regenerative medicine,” says Tachibana-Konwalski, underlining her excitement for the potential applications for her favourite research topic.

Original publication: “Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition”, Flyamer, Gassler et al. , Nature, DOI 10.1038/nature21711

About IMBA:
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

Press picture: http://de.imba.oeaw.ac.at/index.php?id=516

Weitere Informationen:

http://Press picture:
http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>