Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a missing link in how antidepressants work

25.11.2015

Scientists discover a new way in which antidepressants work via the well-known stress protein FKBP51

Scientists at the Max Planck Institute of Psychiatry in Munich have now identified a new functional link between the established depression risk factor FKBP51 and epigenetic changes. This new link improves our understanding of how antidepressants work. It is hoped that as a result in the future we will be able to match pharmaceuticals so that they address more specific biological changes and, as such, will improve the chance of successful treatment thus helping the millions of treatment resistant patients.


Paroxetine was found to only decreased methylation when FKBP51 was present.

© MPI for Psychiatry, 2015

One in ten people will experience the stress-related disorder depression at some point in their lives. Unfortunately, only one third of patients will respond successfully to the medications that are currently available. This low response rate is in part due to our poor understanding of the mechanisms by which these antidepressants work.

Now scientists at the Max Planck Institute of Psychiatry in Munich have identified another mechanism by which these drugs might exert their effects and a link in the chain of how the environment can have an impact on our genetic material.

Stress mediates its biological effects through the steroid hormone cortisol, a so called stress hormone. Steroid hormones work by passing through the cell’s membrane and binding to intracellular receptors. This receptor-hormone complex then moves to the nucleus of the cell and binds to special areas of DNA, called hormone response elements. This binding to hormone response elements leads to gene transcription and the production of other proteins.

The protein FKBP51 belongs to the group of molecular chaperones which are able to modulate the affinity a hormone has for a receptor. The chaperone FKBP51 is a known regulator of stress-related receptors in the brain. As part of the stress response, cortisol binds to intracellular glucocorticoid receptors. However, these receptors are made inactive when they have the chaperone FKBP51 bound to them. As a result, cortisol is less likely to bind to the receptor and so the stress response mechanism is interrupted.

It is therefore unsurprising that that FKBP51 is a well established risk factor for stress-related disorders. FKBP51 has also been shown to determine how well a patient responds to antidepressant therapy and relate to the recurrence of depressive episodes. Successful antidepressant treatment is closely related to the recovery of stress hormone regulation, which in turn is modulated by FKBP51.

Another way that stress exerts its effects is through the attachment (called methylation) of chemical markings (so-called methyl groups) to our genetic material, resulting in a persistent alteration in the activity of genes. These epigenetic changes have been shown to be not only important in the etiology of stress-related disorders but also important in determining the response to treatment.

The scientists looked for evidence of a functional link between FKBP51 and DNMT1 in cells, mice and humans and found that indeed FKBP51 does mediate stress induced epigenetic change in DNMT1. FKBP51 changed phosphorylation, protein complexes and enzymatic activity of DNMT1 which in turn decreased global DNA methylation. “What was really interesting is that the antidepressant Paroxetine only decreased DNMT1 when in the presence of FKBP51” says Nils Gassen, first author of the study. The establishment of this functional link between DNMT1 and FKBP51 suggests a new role for chaperones with actions that go beyond protein production to the genome and epigenome.


Contact

Dr. Theo Rein
Project Group Leader

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

Dr. Anna Niedl
Press and Public Relations

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: presse@psych.mpg.de


Original publication
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J and Rein T.

Chaperoning epigenetics: FKBProtein51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

Science Signaling (2015)

Dr. Theo Rein | Max Planck Institute of Psychiatry, München

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>