Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a missing link in how antidepressants work

25.11.2015

Scientists discover a new way in which antidepressants work via the well-known stress protein FKBP51

Scientists at the Max Planck Institute of Psychiatry in Munich have now identified a new functional link between the established depression risk factor FKBP51 and epigenetic changes. This new link improves our understanding of how antidepressants work. It is hoped that as a result in the future we will be able to match pharmaceuticals so that they address more specific biological changes and, as such, will improve the chance of successful treatment thus helping the millions of treatment resistant patients.


Paroxetine was found to only decreased methylation when FKBP51 was present.

© MPI for Psychiatry, 2015

One in ten people will experience the stress-related disorder depression at some point in their lives. Unfortunately, only one third of patients will respond successfully to the medications that are currently available. This low response rate is in part due to our poor understanding of the mechanisms by which these antidepressants work.

Now scientists at the Max Planck Institute of Psychiatry in Munich have identified another mechanism by which these drugs might exert their effects and a link in the chain of how the environment can have an impact on our genetic material.

Stress mediates its biological effects through the steroid hormone cortisol, a so called stress hormone. Steroid hormones work by passing through the cell’s membrane and binding to intracellular receptors. This receptor-hormone complex then moves to the nucleus of the cell and binds to special areas of DNA, called hormone response elements. This binding to hormone response elements leads to gene transcription and the production of other proteins.

The protein FKBP51 belongs to the group of molecular chaperones which are able to modulate the affinity a hormone has for a receptor. The chaperone FKBP51 is a known regulator of stress-related receptors in the brain. As part of the stress response, cortisol binds to intracellular glucocorticoid receptors. However, these receptors are made inactive when they have the chaperone FKBP51 bound to them. As a result, cortisol is less likely to bind to the receptor and so the stress response mechanism is interrupted.

It is therefore unsurprising that that FKBP51 is a well established risk factor for stress-related disorders. FKBP51 has also been shown to determine how well a patient responds to antidepressant therapy and relate to the recurrence of depressive episodes. Successful antidepressant treatment is closely related to the recovery of stress hormone regulation, which in turn is modulated by FKBP51.

Another way that stress exerts its effects is through the attachment (called methylation) of chemical markings (so-called methyl groups) to our genetic material, resulting in a persistent alteration in the activity of genes. These epigenetic changes have been shown to be not only important in the etiology of stress-related disorders but also important in determining the response to treatment.

The scientists looked for evidence of a functional link between FKBP51 and DNMT1 in cells, mice and humans and found that indeed FKBP51 does mediate stress induced epigenetic change in DNMT1. FKBP51 changed phosphorylation, protein complexes and enzymatic activity of DNMT1 which in turn decreased global DNA methylation. “What was really interesting is that the antidepressant Paroxetine only decreased DNMT1 when in the presence of FKBP51” says Nils Gassen, first author of the study. The establishment of this functional link between DNMT1 and FKBP51 suggests a new role for chaperones with actions that go beyond protein production to the genome and epigenome.


Contact

Dr. Theo Rein
Project Group Leader

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

Dr. Anna Niedl
Press and Public Relations

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: presse@psych.mpg.de


Original publication
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J and Rein T.

Chaperoning epigenetics: FKBProtein51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

Science Signaling (2015)

Dr. Theo Rein | Max Planck Institute of Psychiatry, München

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>