Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a missing link in how antidepressants work

25.11.2015

Scientists discover a new way in which antidepressants work via the well-known stress protein FKBP51

Scientists at the Max Planck Institute of Psychiatry in Munich have now identified a new functional link between the established depression risk factor FKBP51 and epigenetic changes. This new link improves our understanding of how antidepressants work. It is hoped that as a result in the future we will be able to match pharmaceuticals so that they address more specific biological changes and, as such, will improve the chance of successful treatment thus helping the millions of treatment resistant patients.


Paroxetine was found to only decreased methylation when FKBP51 was present.

© MPI for Psychiatry, 2015

One in ten people will experience the stress-related disorder depression at some point in their lives. Unfortunately, only one third of patients will respond successfully to the medications that are currently available. This low response rate is in part due to our poor understanding of the mechanisms by which these antidepressants work.

Now scientists at the Max Planck Institute of Psychiatry in Munich have identified another mechanism by which these drugs might exert their effects and a link in the chain of how the environment can have an impact on our genetic material.

Stress mediates its biological effects through the steroid hormone cortisol, a so called stress hormone. Steroid hormones work by passing through the cell’s membrane and binding to intracellular receptors. This receptor-hormone complex then moves to the nucleus of the cell and binds to special areas of DNA, called hormone response elements. This binding to hormone response elements leads to gene transcription and the production of other proteins.

The protein FKBP51 belongs to the group of molecular chaperones which are able to modulate the affinity a hormone has for a receptor. The chaperone FKBP51 is a known regulator of stress-related receptors in the brain. As part of the stress response, cortisol binds to intracellular glucocorticoid receptors. However, these receptors are made inactive when they have the chaperone FKBP51 bound to them. As a result, cortisol is less likely to bind to the receptor and so the stress response mechanism is interrupted.

It is therefore unsurprising that that FKBP51 is a well established risk factor for stress-related disorders. FKBP51 has also been shown to determine how well a patient responds to antidepressant therapy and relate to the recurrence of depressive episodes. Successful antidepressant treatment is closely related to the recovery of stress hormone regulation, which in turn is modulated by FKBP51.

Another way that stress exerts its effects is through the attachment (called methylation) of chemical markings (so-called methyl groups) to our genetic material, resulting in a persistent alteration in the activity of genes. These epigenetic changes have been shown to be not only important in the etiology of stress-related disorders but also important in determining the response to treatment.

The scientists looked for evidence of a functional link between FKBP51 and DNMT1 in cells, mice and humans and found that indeed FKBP51 does mediate stress induced epigenetic change in DNMT1. FKBP51 changed phosphorylation, protein complexes and enzymatic activity of DNMT1 which in turn decreased global DNA methylation. “What was really interesting is that the antidepressant Paroxetine only decreased DNMT1 when in the presence of FKBP51” says Nils Gassen, first author of the study. The establishment of this functional link between DNMT1 and FKBP51 suggests a new role for chaperones with actions that go beyond protein production to the genome and epigenome.


Contact

Dr. Theo Rein
Project Group Leader

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

Dr. Anna Niedl
Press and Public Relations

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: presse@psych.mpg.de


Original publication
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J and Rein T.

Chaperoning epigenetics: FKBProtein51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

Science Signaling (2015)

Dr. Theo Rein | Max Planck Institute of Psychiatry, München

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>