Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a missing link in how antidepressants work

25.11.2015

Scientists discover a new way in which antidepressants work via the well-known stress protein FKBP51

Scientists at the Max Planck Institute of Psychiatry in Munich have now identified a new functional link between the established depression risk factor FKBP51 and epigenetic changes. This new link improves our understanding of how antidepressants work. It is hoped that as a result in the future we will be able to match pharmaceuticals so that they address more specific biological changes and, as such, will improve the chance of successful treatment thus helping the millions of treatment resistant patients.


Paroxetine was found to only decreased methylation when FKBP51 was present.

© MPI for Psychiatry, 2015

One in ten people will experience the stress-related disorder depression at some point in their lives. Unfortunately, only one third of patients will respond successfully to the medications that are currently available. This low response rate is in part due to our poor understanding of the mechanisms by which these antidepressants work.

Now scientists at the Max Planck Institute of Psychiatry in Munich have identified another mechanism by which these drugs might exert their effects and a link in the chain of how the environment can have an impact on our genetic material.

Stress mediates its biological effects through the steroid hormone cortisol, a so called stress hormone. Steroid hormones work by passing through the cell’s membrane and binding to intracellular receptors. This receptor-hormone complex then moves to the nucleus of the cell and binds to special areas of DNA, called hormone response elements. This binding to hormone response elements leads to gene transcription and the production of other proteins.

The protein FKBP51 belongs to the group of molecular chaperones which are able to modulate the affinity a hormone has for a receptor. The chaperone FKBP51 is a known regulator of stress-related receptors in the brain. As part of the stress response, cortisol binds to intracellular glucocorticoid receptors. However, these receptors are made inactive when they have the chaperone FKBP51 bound to them. As a result, cortisol is less likely to bind to the receptor and so the stress response mechanism is interrupted.

It is therefore unsurprising that that FKBP51 is a well established risk factor for stress-related disorders. FKBP51 has also been shown to determine how well a patient responds to antidepressant therapy and relate to the recurrence of depressive episodes. Successful antidepressant treatment is closely related to the recovery of stress hormone regulation, which in turn is modulated by FKBP51.

Another way that stress exerts its effects is through the attachment (called methylation) of chemical markings (so-called methyl groups) to our genetic material, resulting in a persistent alteration in the activity of genes. These epigenetic changes have been shown to be not only important in the etiology of stress-related disorders but also important in determining the response to treatment.

The scientists looked for evidence of a functional link between FKBP51 and DNMT1 in cells, mice and humans and found that indeed FKBP51 does mediate stress induced epigenetic change in DNMT1. FKBP51 changed phosphorylation, protein complexes and enzymatic activity of DNMT1 which in turn decreased global DNA methylation. “What was really interesting is that the antidepressant Paroxetine only decreased DNMT1 when in the presence of FKBP51” says Nils Gassen, first author of the study. The establishment of this functional link between DNMT1 and FKBP51 suggests a new role for chaperones with actions that go beyond protein production to the genome and epigenome.


Contact

Dr. Theo Rein
Project Group Leader

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-531

Email: theorein@psych.mpg.de

Dr. Anna Niedl
Press and Public Relations

Max Planck Institute of Psychiatry, München
Phone: +49 89 30622-263

Fax: +49 89 30622-370

Email: presse@psych.mpg.de


Original publication
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J and Rein T.

Chaperoning epigenetics: FKBProtein51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

Science Signaling (2015)

Dr. Theo Rein | Max Planck Institute of Psychiatry, München

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>