Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uncovering a reaction’s secrets


A theoretical and experimental study could lead to improved catalysts for producing hydrogen fuel from waste biomass

Experimental analysis and computer simulations reveal new insights into the process by which ethanol produced from waste biomass can be converted into hydrogen in the presence of a catalyst. These insights should aid the design of more efficient catalysts for hydrogen production.

Understanding the ethanol steam reforming reaction mechanism is crucial for the design of cheap and efficient catalysts able to convert biomass to hydrogen fuel.

© pitnu/iStock/Thinkstock

Hydrogen gas is an environmentally friendly alternative to fossil fuels. Today, through a process known as steam reforming, hydrogen is obtained by using steam to break up a hydrocarbon — most commonly, methane in natural gas. However, ethanol produced by fermenting waste biomass is potentially a cleaner starting material for this process.

However, despite having been extensively studied in recent years, steam reforming of ethanol is currently too inefficient to produce hydrogen on an industrial scale. This stems partly from the complexity of its reaction, which can yield a range of different products. “Our lack of understanding of the detailed reaction mechanism hinders further improvement of a catalyst for the reaction,” explains Jia Zhang of the A*STAR Institute of High Performance Computing in Singapore. “The reaction was a black box before we started exploring it.”

Now, Zhang and her co-workers have used experiments and computer simulations to probe how ethanol breaks down into hydrogen on rhodium catalysts supported on zirconia-based oxides1. These nanosized catalysts had previously been shown to be highly active for this reaction.

The team used gas chromatography and mass spectrometry to monitor in real time the intermediate species that form as the reaction proceeds. These measurements revealed that the C2H4O species is an important intermediate. Of the two possible structures this species can adopt, acetaldehyde (CH3CHO) was identified as the most probable one by the team’s computer calculations. The calculations also showed that water plays an unexpectedly important role in controlling the reaction pathway.

Based on this knowledge, the team proposed a mechanism for the reaction under their chosen conditions. Hydrogen is produced at most stages along the pathway, including the final step in which carbon monoxide reacts with water to produce hydrogen and carbon dioxide. The team’s calculations showed that the success of this final step is critical in determining the amount of hydrogen produced by steam reforming.

“Our theoretical simulations and experimental analysis provide important information on the reaction mechanism,” says Zhang. “This is a fundamental step forward in our understanding of the catalyst, which is the basis of catalyst design.” The team’s ultimate goal is to design catalysts that can produce hydrogen more cheaply and efficiently than current catalysts.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Chemical Engineering and Sciences

Zhang, J., Zhong, Z., Cao, X.-M., Hu, P., Sullivan, M. B. & Chen, L. Ethanol steam reforming on Rh catalysts: Theoretical and experimental understanding. ACS Catalysis 4, 448–456 (2014). | article

A*STAR Research | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>