Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering a reaction’s secrets

23.03.2015

A theoretical and experimental study could lead to improved catalysts for producing hydrogen fuel from waste biomass

Experimental analysis and computer simulations reveal new insights into the process by which ethanol produced from waste biomass can be converted into hydrogen in the presence of a catalyst. These insights should aid the design of more efficient catalysts for hydrogen production.


Understanding the ethanol steam reforming reaction mechanism is crucial for the design of cheap and efficient catalysts able to convert biomass to hydrogen fuel.

© pitnu/iStock/Thinkstock

Hydrogen gas is an environmentally friendly alternative to fossil fuels. Today, through a process known as steam reforming, hydrogen is obtained by using steam to break up a hydrocarbon — most commonly, methane in natural gas. However, ethanol produced by fermenting waste biomass is potentially a cleaner starting material for this process.

However, despite having been extensively studied in recent years, steam reforming of ethanol is currently too inefficient to produce hydrogen on an industrial scale. This stems partly from the complexity of its reaction, which can yield a range of different products. “Our lack of understanding of the detailed reaction mechanism hinders further improvement of a catalyst for the reaction,” explains Jia Zhang of the A*STAR Institute of High Performance Computing in Singapore. “The reaction was a black box before we started exploring it.”

Now, Zhang and her co-workers have used experiments and computer simulations to probe how ethanol breaks down into hydrogen on rhodium catalysts supported on zirconia-based oxides1. These nanosized catalysts had previously been shown to be highly active for this reaction.

The team used gas chromatography and mass spectrometry to monitor in real time the intermediate species that form as the reaction proceeds. These measurements revealed that the C2H4O species is an important intermediate. Of the two possible structures this species can adopt, acetaldehyde (CH3CHO) was identified as the most probable one by the team’s computer calculations. The calculations also showed that water plays an unexpectedly important role in controlling the reaction pathway.

Based on this knowledge, the team proposed a mechanism for the reaction under their chosen conditions. Hydrogen is produced at most stages along the pathway, including the final step in which carbon monoxide reacts with water to produce hydrogen and carbon dioxide. The team’s calculations showed that the success of this final step is critical in determining the amount of hydrogen produced by steam reforming.

“Our theoretical simulations and experimental analysis provide important information on the reaction mechanism,” says Zhang. “This is a fundamental step forward in our understanding of the catalyst, which is the basis of catalyst design.” The team’s ultimate goal is to design catalysts that can produce hydrogen more cheaply and efficiently than current catalysts.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Chemical Engineering and Sciences

Reference
Zhang, J., Zhong, Z., Cao, X.-M., Hu, P., Sullivan, M. B. & Chen, L. Ethanol steam reforming on Rh catalysts: Theoretical and experimental understanding. ACS Catalysis 4, 448–456 (2014). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7208
http://www.researchsea.com

More articles from Life Sciences:

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>