Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNC researchers find new way to force stem cells to become bone cells


Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips

Imagine you have a bone fracture or a hip replacement, and you need bone to form, but you heal slowly - a common fact of life for older people. Instead of forming bone, you could form fat. Researchers at the University of North Carolina School of Medicine may have found a way to tip the scale in favor of bone formation. They used cytochalasin D, a naturally occurring substance found in mold, as a proxy to alter gene expression in the nuclei of mesenchymal stem cells to force them to become osteoblasts (bone cells).

Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei.

Credit: UNC School of Medicine

By treating stem cells - which can become fat or bone cells - with cytochalasin D- the result was clear: the stem cells became bone cells. Further, injecting a small amount of cytochalasin D into the bone marrow space of mice caused bone to form. This research, published in the journal Stem Cells, details how the scientists altered the stem cells and triggered bone growth.

"And the bone forms quickly," said Janet Rubin, MD, senior author of the paper and professor of medicine at the UNC School of Medicine. "The data and images are so clear; you don't have to be a bone biologist to see what cytochalasin D does in one week in a mouse."

Rubin added, "This was not what we expected. This was not what we were trying to do in the lab. But what we've found could become an amazing way to jump-start local bone formation. However, this will not address osteoporosis, which involves bone loss throughout the skeleton."

At the center of the discovery is a protein called actin, which forms fibers that span the cytoplasm of cells to create the cell's cytoskeleton. Osteoblasts have more cytoskeleton than do adipocytes (fat cells). Buer Sen, MD, first author of the Stem Cells paper and research associate in Rubin's lab, used cytochalasin D to break up the actin cytoskeleton. In theory - and according to the literature - this should have destroyed the cell's ability to become bone cells. The cells, in turn, should have been more likely to turn into adipocytes. Instead, Sen found that actin was trafficked into the nuclei of the stem cells, where it had the surprising effect of inducing the cells to become osteoblasts.

"My first reaction was, 'No way, Buer,'" Rubin said. "'This must be wrong. It goes against everything in the literature.' But he said, 'I've rerun the experiments. This is what happens.'" Rubin's team expanded the experiments while exploring the role of actin. They found that when actin enters and stays in the nucleus, it enhances gene expression in a way that causes the cell to become an osteoblast.

"Amazingly, we found that the actin forms an architecture inside the nucleus and turns on the bone-making genetic program," Rubin said. "If we destroy the cytoskeleton but do not allow the actin to enter the nucleus, the little bits of actin just sit in the cytoplasm, and the stem cells do not become bone cells."

Rubin's team then turned to a mouse model. Using live mice, they showed that cytochalasin D induced bone formation in mice.

Bone formation in mice isn't very different from that in humans, so this research might be translatable. And while cytochalasin D might not be the actual agent scientists use to trigger bone formation in the clinic, Rubin's study shows that triggering actin transport into the nuclei of cells may be a good way to force mesenchymal stem cells to become bone cells.


Rubin, the vice chair for research at the UNC School of Medicine, holds join appointments in pediatrics and pharmacology, and is an adjunct professor of bioengineering.

This work was funded by the National Institutes of Health.

Mark Derewicz | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>