Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis

26.06.2017

A team of chemists from the University of Kentucky and the Institute of Physics Research of Mar del Plata in Argentina has just reported a way to trigger a fundamental step in the mechanism of photosynthesis, providing a process with great potential for developing new technology to reduce carbon dioxide levels.

Led by Marcelo Guzman, an associate professor of chemistry in the UK College of Arts and Sciences, and Ruixin Zhou, a doctoral student working with Guzman, the researchers used a synthetic nanomaterial that combines the highly reducing power of cuprous oxide (Cu2O) with a coating of oxidizing titanium dioxide (TiO2) that prevents the loss of copper (I) ion in the catalyst.


This is the Cu2O (right) that gets photocorrosion compared to Cu2O/TiO2 (left) that operates under a Z-scheme to reduce CO2.

Credit: Ruixin Zhou, UK doctoral student of chemistry.

The catalyst made of Cu2O/TiO2 has the unique ability to transfer electrons for reducing the atmospheric greenhouse gas carbon dioxide (CO2) while simultaneously breaking the molecule of water (H2O). The unique feature of this catalyst for electron transfer mimics the so called "Z-scheme" mechanism from photosynthesis.

Published in Applied Catalysis B: Environmental, the researchers demonstrated that if the catalyst is exposed to sunlight, electrons are transferred to CO2 in a process that resembles the way photosystems 1 and 2 operate in nature.

"Developing the materials that can be combined to reduce CO2 through a direct Z-scheme mechanism with sunlight is an important problem," said Zhou. "However, it is even more difficult to demonstrate the process actually works. From this scientific viewpoint, the research is contributing to advance feature technology for carbon sequestration."

This is a task that many scientists have been pursuing for a long time but the challenge is to prove that both components of the catalyst interact to enable the electronic properties of a Z-scheme mechanism. Although a variety of materials may be used, the key aspect of this research is that the catalyst is not made of scarce and very expensive elements such as rhenium and iridium to drive the reactions with sunlight energy reaching the Earth's surface. The catalyst employed corrosion resistant TiO2 to apply a white protective coating to octahedral particles of red Cu2O.

The team designed a series of experiments to test out the hypothesis that the catalyst operates through a Z-scheme instead of using a double-charge transfer mechanism. The measured carbon monoxide (CO) production from CO2 reduction, the identification of hydroxyl radical (HO* ) intermediate from H2O oxidation en route to form oxygen (O2), and the characterized electronic and optical properties of the catalyst and individual components verified the proposed Z-scheme was operational.

The next goal of the research is to improve the approach by exploring a series of different catalysts and identify the most efficient one to transform CO2 into chemical fuels such as methane. This way, new technology will be created to supply clean and affordable alternative energy sources and to address the problem of continuous consumption of fossil fuels and rising levels of greenhouse gases.

###

This research was supported in part by the U.S. National Science Foundation, UK and by two Argentinean agencies (CONICET and ANPCyT).

Read more at the journal website: Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion, DOI: 10.1016/j.apcatb.2017.05.058.

Media Contact

Jenny Wells
jenny.wells@uky.edu
859-257-5343

 @universityofky

http://www.uky.edu 

Jenny Wells | EurekAlert!

Further reports about: CO2 Electrons Photosynthesis TiO2 coating dioxide greenhouse properties sunlight

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>