Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017

Collaboration between the University of Maryland, College Park, and the University of Maryland, Baltimore, finds two group A Streptococcus genes involved in invasive, spreading infection underneath skin.

Group A Streptococcus bacteria cause a variety of illnesses that range from mild nuisances like strep throat to life-threatening conditions including pneumonia, toxic shock syndrome and the flesh-eating disease formally known as necrotizing fasciitis. The life-threatening infections occur when the bacteria spread underneath the surface of the skin or throat and invade the underlying soft tissue. A 2005 study published in The Lancet attributed half a million deaths worldwide each year to group A Streptococcus.


Tissue staining shows group A Streptococcus soft tissue infection at the cellular level. (L-R) Uninfected mouse tissue and mouse tissue 48 hours after infection. The dense dots indicate immune system cells that swarmed in to attempt to control the infection. The densest purple staining toward the bottom is necrotic tissue surrounding bacteria.

Credit: Joshua Leiberman, University of Maryland Baltimore

"In 24 to 48 hours, you can go from being healthy to having a limb amputated to save your life," said Kevin McIver, professor of cell biology and molecular genetics at the University of Maryland, College Park. "And we don't really know why or how the bacteria do that."

In a new study, McIver's laboratory and researchers at the University of Maryland School of Medicine identified two genes important for invasive group A Streptococcus infections in mice. The genes, subcutaneous fitness genes A (scfA) and B (scfB), may prove to be promising clinical targets in the fight against these infections, as there are no vaccines against group A Streptococcus or effective treatments for invasive infections. The study was published online on August 23, 2017, in the journal PLOS Pathogens.

Led by Yoann Le Breton, the study's first author and a research assistant professor in McIver's group, the researchers discovered scfA and scfB by performing transposon sequencing on the entire group A Streptococcus genome. Transposons, also known as jumping genes, are short sequences of DNA that physically move within a genome, mutating genes by jumping into them. If the mutation causes an interesting effect, scientists can identify the mutated gene by locating the transposon, sequencing the DNA surrounding the transposon and mapping its location in the genome.

"Invasion under the skin, or subcutaneously, is not the norm for group A Streptococcus bacteria; it's actually very rare," McIver explained. "We hypothesized that there must be genes in the bacteria important for invading soft tissues and surviving under the skin. And we tested that theory by using transposons to make thousands of different individual mutants that we used to infect a subcutaneous environment in mice."

McIver and his colleagues used a transposon called Krmit--which they created in a previous study--to generate a collection of approximately 85,000 unique mutants in a group A Streptococcus strain. They injected the mutant strains into mice, which resulted in humanlike infections. The transposon was named for the Muppets character Kermit the frog, whose creator Jim Henson, a 1960 College Park alumnus, died of toxic shock syndrome following group A Streptococcal pneumonia.

"We were particularly interested in the mutations that didn't come out the other end--the ones not found in the surviving bacteria from the infected tissue," McIver said. "These genes would be good targets for a vaccine or treatment because the bacteria missing these genes did not flourish in the infection site."

The researchers identified 273 scf genes as potentially involved in establishing infection under the skin, but two genes stood out: scfA and scfB. Based on patterns in their DNA sequences, these genes likely encode proteins in the bacterial membrane. This is a prime location for gene products involved in infection because many dangerous bacteria secrete toxins or proteins through the membrane to attack the host. Additional experiments showed that bacteria lacking scfA or scfB had difficulty spreading from under the skin to the bloodstream and other organs.

The results suggest that these two genes are involved in the invasion process and may be potential targets for therapeutics.

"The next steps will be to expand the study to include multiple animal models, and these experiments are already underway," said Mark Shirtliff, a co-author of the study and a professor in the Department of Microbiology and Immunology at the University of Maryland School of Medicine and the Department of Microbial Pathogenesis at the University of Maryland School of Dentistry. "We can also begin to formulate improved therapies and vaccines against group A streptococcus infections and their complications such as rheumatic heart disease, pneumonia and necrotizing fasciitis."

McIver also looks forward to using transposon sequencing to study other ways bacteria attack humans.

"Transposon sequencing can be used to probe how bacteria infect humans in any environment you can think of," McIver said. "Like group A Streptococcus, many pathogenic bacteria have completely sequenced genomes, but we don't know what most of the genes are doing. We're excited to have a method to interrogate all that unknown genetic material to better understand human infections."

###

Other study co-authors affiliated with the UMD Department of Cell Biology and Molecular Genetics include Professor Najib El-Sayed, postdoctoral fellow Ashton Belew, graduate student Ganesh Sundar and laboratory technician Emrul Islam.

This work was supported by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (Award Nos. AI047928, AI134079 and AI094773) and a University of Maryland, Baltimore and University of Maryland, College Park Seed Grant. The content of this article does not necessarily reflect the views of these organizations.

The research paper, "Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection," Yoann Le Breton, Ashton Belew, Jeffrey Freiberg, Ganesh Sundar, Emrul Islam, Joshua Lieberman, Mark Shirtliff, Hervé Tettelin, Najib El-Sayed and Kevin McIver, was published online in the journal PLOS Pathogens on August 23, 2017.

Media Relations Contact: Irene Ying, 301-405-5204, zying@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences?

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Irene Ying | EurekAlert!

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>