Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two bilateral French-Austrian research projects start at IST Austria

11.06.2018

Research on cell division and synapse function funded by FWF and ANR │Project leaders at IST Austria are Carl-Philipp Heisenberg und Johann Danzl

Two joint projects between labs at the Institute of Science and Technology (IST) Austria and at French research institutes, funded by the Austrian Science Fund FWF and the Agence Nationale de la Recherche ANR, are kicking-off.


Phallusia mammillata, a type of ascidia.

Waielbi (CC BY-SA 3.0)


Super-resolution STED image of a synaptic protein (green), indicating the location of synapses on a nerve cell (blue).

Johann Danzl, IST Austria

The lab of Carl-Philipp Heisenberg at IST Austria, together with the lab of Alex MacDougall at Centre national de la recherche scientifique (CNRS), will study how polarity, shape and mechanics of cells control cell division. Johann Danzl at IST Austria partners with the lab of Olivier Thoumine at the Interdisciplinary Institute for Neuroscience in Bourdeaux to study which role synaptic adhesion molecules play in synapse function, using optically controlled molecules and high-resolution optical imaging. The bilateral French-Austrian Joint Research Projects are funded for three years with a total of around 250,000€ each.

What are the rules controlling cell division?

Ascidians, or sea squirts, are closely related to vertebrates but look rather unremarkable. Their name derives from the Greek word for “little bag”, and indeed the 1mm to 10 cm long sea animals resemble odd blobs. While they look unassuming as adults, the embryos have a remarkable characteristic: they consist only of a small number of cells, and the positioning and timing of cell divisions are identical between different individuals of the same species – and even between species. But what are the rules that govern this so-called “invariate cleavage pattern”? In the joint project, the Heisenberg and MacDougall labs will investigate this question in the ascidian Phallusia mammillata.

Maternal factors and gene-regulatory networks are known to affect cell division and position in the ascidian embryo. However, cells in the embryo do not exist in isolation, but press against each other. Cues are likely to spread between cells through adhesion, which transmits mechanical forces across cells. But how do these physical forces influence cleavage pattern and cell position? The Heisenberg and MacDougall labs will pool their expertise to answer this question.

The McDougall lab previously showed that the ascidian cell division pattern depends on the positioning of the so-called spindle along the cell axis. The spindle is the structure inside a dividing cell that distributes copies of the cell’s genetic material between the new cells, and its position along the so-called apicobasal cell axis influences the position of division. In the new project, the labs will combine molecular, cellular and biophysical experiments to look at how apicobasal cell polarization interacts with cell shape to orient cell division and give shape to the embryo. This project combines the expertise of the ascidian laboratory led by MacDougall with the expertise of the Heisenberg laboratory in measuring the mechanical properties of cells to unravel the complex interplay between apicobasal polarity and cell shape.

Which role do synaptic adhesion molecules play in synaptic connections?

Signals in our brains are sent from one neuron to another via their connections, the synapses. The message itself is sent through chemicals called neurotransmitters, which are released by the pre-synaptic neuron and sensed through receptors on the post-synaptic neuron. But the pre- and post-synaptic neurons are also structurally connected through so-called adhesion molecules. These neuronal adhesion molecules, such as neurexins on the pre-synaptic neuron and neuroligins on the post-synaptic neuron, play important roles in wiring, sculpting and maintaining synaptic connections. But how do synaptic adhesion molecules control the formation of synapses? Johann Danzl at IST Austria and Olivier Thoumine investigate this question by putting the adhesion molecules under light control, helping to understand synaptic development and function.

In the project, Danzl and Thoumine will use optogenetically controlled synaptic adhesion molecules, which can be switched on and off with light at exactly defined time points. In this way, the researchers can follow the formation of synapses in living neurons as adhesion molecules are switched from the off into the on state. The Thoumine lab is specialized in neuronal adhesion proteins, with expertise in single molecule imaging, computation and electrophysiology to study adhesion molecules and their dynamics at the single-molecule level. The lab of Johann Danzl at IST Austria has expertise in imaging using super-resolution nanoscopy, which has a much higher resolution than conventional light microscopy, and optical control of photoswitchable molecules. This allows them to image the fine structural features of neuronal cells and synapses. Bringing the expertise of these labs together, the project will enable the scientists to dynamically and quantitatively describe and regulate adhesion protein clustering and function at synapses.

IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

www.ist.ac.at

Weitere Informationen:

http://ist.ac.at/en/research/research-groups/heisenberg-group/ Website of Heisenberg lab
http://ist.ac.at/en/research/research-groups/danzl-group/ Website of Danzl lab

Dr. Elisabeth Guggenberger | Institute of Science and Technology Austria

More articles from Life Sciences:

nachricht The cartography of the nucleus
11.06.2018 | California Institute of Technology

nachricht Ten thousand bursting genes
11.06.2018 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Ten thousand bursting genes

11.06.2018 | Life Sciences

Silicon provides means to control quantum bits for faster algorithms

11.06.2018 | Information Technology

Ice on the spin liquid

11.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>