Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two antibiotics fight bacteria differently than thought

02.11.2016

Two widely prescribed antibiotics -- chloramphenicol and linezolid -- may fight bacteria in a different way from what scientists and doctors thought for years, University of Illinois at Chicago researchers have found. Instead of indiscriminately stopping protein synthesis, the drugs put the brakes on the protein synthesis machinery only at specific locations in the gene.

Ribosomes are among the most complex components in the cell, responsible for churning out all the proteins a cell needs for survival. In bacteria, ribosomes are the target of many important antibiotics.


Chloramphenicol, linezolid stall ribosomes at specific mRNA locations.

Credit: Alexander Mankin, UIC

The team of Alexander Mankin and Nora Vazquez-Laslop has conducted groundbreaking research on the ribosome and antibiotics. In their latest study, published in the Proceedings of the National Academy of Sciences, they found that while chloramphenicol and linezolid attack the catalytic center of the ribosome, they stop protein synthesis only at specific checkpoints.

"Many antibiotics interfere with the growth of pathogenic bacteria by inhibiting protein synthesis," says Mankin, director of the UIC Center for Biomolecular Sciences and professor of medicinal chemistry and pharmacognosy. "This is done by targeting the catalytic center of the bacterial ribosome, where proteins are being made. It is commonly assumed that these drugs are universal inhibitors of protein synthesis and should readily block the formation of every peptide bond."

"But -- we have shown that this is not necessarily the case," said Vazquez-Laslop, research associate professor of medicinal chemistry and pharmacognosy.

A natural product, chloramphenicol is one of the oldest antibiotics on the market. For decades it has been useful for many bacterial infections, including meningitis, plague, cholera and typhoid fever.

Linezolid, a synthetic drug, is a newer antibiotic used to treat serious infections -- streptococci and methicillin-resistant Staphylococcus aureus (MRSA), among others -- caused by Gram-positive bacteria that are resistant to other antibiotics. Mankin's previous research established the site of action and mechanism of resistance to linezolid.

While the antibiotics are very different, they each bind to the ribosome's catalytic center, where they were expected to inhibit formation of any peptide bond that links the components of the protein chain into a long biopolymer. In simple enzymes, an inhibitor that invades the catalytic center simply stops the enzyme from doing its job. This, Mankin said, had been what scientists had believed was also true for antibiotics that target the ribosome.

"Contrary to this view, the activity of chloramphenicol and linezolid critically depends on the nature of specific amino acids of the nascent chain carried by the ribosome and by the identity of the next amino acid to be connected to a growing protein," Vazquez-Laslop said. "These findings indicate that the nascent protein modulates the properties of the ribosomal catalytic center and affects binding of its ligands, including antibiotics."

Combining genomics and biochemistry has allowed the UIC researchers to better understand how the antibiotics work.

"If you know how these inhibitors work, you can make better drugs and make them better tools for research," said Mankin. "You can also use them more efficiently to treat human and animal diseases."

###

James Marks, Krishna Kannan, Emily Roncase, Dorota Klepacki, Amira Kefi and Cedric Orelle, all of UIC, are co-authors on the publication. The research was funded by National Institutes of Health grant AI 125518.

Media Contact

Sam Hostettler
samhos@uic.edu
312-355-2522

 @uicnews

http://www.uic.edu 

Sam Hostettler | EurekAlert!

Further reports about: UIC antibiotics drugs infections protein synthesis proteins ribosome synthesis typhoid fever

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>