Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tweaking a molecule's structure can send it down a different path to crystallization

18.04.2017

Insights could lead to better control of drug development, energy technologies -- and food

Silky chocolate, a better medical drug, or solar panels all require the same thing: just the right crystals making up the material. Now, scientists trying to understand the paths crystals take as they form have been able to influence that path by modifying the starting ingredient.


A small change to a peptoid that crystallizes in one step (left) sends the modified peptoid down a more complicated path from disordered clump to crystal (right).

Credit: Jim De Yoreo/PNNL

The insights gained from the results, reported April 17 in Nature Materials, could eventually help scientists better control the design of a variety of products for energy or medical technologies.

"The findings address an ongoing debate about crystallization pathways," said materials scientist Jim De Yoreo at the Department of Energy's Pacific Northwest National Laboratory and the University of Washington. "They imply you can control the various stages of materials assembly by carefully choosing the structure of your starting molecules."

From floppy to stiff

One of the simplest crystals, diamonds are composed of one atom -- carbon. But in the living world, crystals, like the ones formed by cocoa butter in chocolate or ill-formed ones that cause sickle cell anemia, are made from molecules that are long and floppy and contain a lengthy well-defined sequence of many atoms. They can crystallize in a variety of ways, but only one way is the best. In pharmaceuticals, the difference can mean a drug that works versus one that doesn't.

Chemists don't yet have enough control over crystallization to ensure the best form, partly because chemists aren't sure how the earliest steps in crystallization happen. A particular debate has focused on whether complex molecules can assemble directly, with one molecule attaching to another, like adding one playing card at a time to a deck. They call this a one-step process, the mathematical rules for which scientists have long understood.

The other side of the debate argues that crystals require two steps to form. Experiments suggest that the beginning molecules first form a disordered clump and then, from within that group, start rearranging into a crystal, as if the cards have to be mixed into a pile first before they could form a deck. De Yoreo and his colleagues wanted to determine if crystallization always required the disordered step, and if not, why not.

Clump, snap and ...

To do so, the scientists formed crystals from a somewhat simplified version of the sequence-defined molecules found in nature, a version they call a peptoid. The peptoid was not complicated -- just a string of two repeating chemical subunits (think "ABABAB") -- yet complex because it was a dozen subunits long. Based on its symmetrical chemical nature, the team expected multiple molecules to come together into a larger structure, as if they were Lego blocks snapping together.

In a second series of experiments, they wanted to test how a slightly more complicated molecule assembled. So, the team added a molecule onto the initial ABABAB... sequence that stuck out like a tail. The tails attracted each other, and the team expected their association would cause the new molecules to clump. But they weren't sure what would happen afterwards.

The researchers put the peptoid molecules into solutions to let them crystallize. Then the team used a variety of analytical techniques to see what shapes the peptoids made and how fast. It turns out the two peptoids formed crystals in very different fashions.

A tail of two steps

As the scientists mostly expected, the simpler peptoid formed initial crystals a few nanometers in size that grew longer and taller as more of the peptoid molecules snapped into place. The simple peptoid followed all the rules of a one-step crystallization process.

But thrusting the tail into the mix disrupted the calm, causing a complex set of events to take place before the crystals appeared. Overall, the team showed that this more complicated peptoid first clumped together into small clusters unseen with the simpler molecules.

Some of these clusters settled onto the available surface, where they sat unchanging before suddenly converting into crystals and eventually growing into the same crystals seen with the simple peptoid. This behavior was something new and required a different mathematical model to describe it, according to the researchers. Understanding the new rules will allow researchers to determine the best way to crystallize molecules.

"We were not expecting that such a minor change makes the peptoids behave this way," said De Yoreo. "The results are making us think about the system in a new way, which we believe will lead to more predictive control over the design and assembly of biomimetic materials."

###

This work was supported by the Department of Energy Office of Science and PNNL's Laboratory Directed Research and Development program.

Reference: Xiang Ma, Shuai Zhang, Fang Jiao, Christina Newcomb, Yuliang Zhang, Arushi Prakash, Zhihao Liao, Marcel Baer, Christopher Mundy, Jim Pfaendtner, Aleksandr Noy, Chun-Long Chen and Jim De Yoreo, Tuning crystallization pathways through sequence-engineering of biomimetic polymers. Nature Materials April 17, 2017 DOI: 10.1038/nmat4891 (In press.)

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

Media Contact

Mary Beckman
mary.beckman@pnnl.gov
509-375-3688

 @PNNLab

http://www.pnnl.gov/news 

Mary Beckman | EurekAlert!

Further reports about: Nature Materials crystallization crystals peptoid

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>