Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis: Researchers Uncover how Bacteria Burst our Cells

11.04.2017

Scientists based in Vienna unveil the complex molecular structure that causes lethal infections by Mycobacterium tuberculosis (Mtb). Their findings might have implications for potential therapies against antibiotic-resistant tuberculosis.

In a paper published this week in Nature Microbiology, an international team of scientists across Europe, including IMP (Institute of Molecular Pathology) and IMBA (Institute of Molecular Biotechnology of the Austrian Academy of Sciences) group leader Thomas Marlovits, describe the overall architecture of an assembly of proteins known as Type VII (T7SS) secretion systems found in a group of bacteria which cause diseases such as tuberculosis.


T7SS is a molecular complex found in the inner bacterial membrane of Mycobacteria and is involved in infection

IMP/IMBA

“We could identify a unique architectural principle that potentially reveals a novel molecular mechanism of T7SS, a protein complex located in the cell membrane of bacteria”, says molecular biologist and biochemist Thomas Marlovits, who led the structural analysis by electron microscopy and who is also Professor at the Medical Center Hamburg-Eppendorf (UKE) and deputy director at the Centre for Structural Systems Biology (CSSB) in Hamburg.

“This new system will allow us to further investigate the biology of the bacterium that causes tuberculosis as Mtb relies heavily on T7SS to transport molecules across its cell membrane upon infection, disarming and damaging the host cell.” Relying heavily on large-scale facilities for structural data but also Mtb genetics, the team had joined forces with researchers at EMBL Hamburg and at the Vrije Universiteit Amsterdam.

New drugs are urgently needed in the fight against tuberculosis as the bacteria responsible for causing the disease become increasingly resistant to current antibiotics. According to the World Health Organisation, tuberculosis resulted in 1.8 million deaths and 10.4 million new infections in 2015, making it one of the top 10 causes of death in humans worldwide.

The bacterium responsible has a complex biology and a comprehensive understanding of this is crucial to inform the development of new drugs.

T7SS-systems play a key role in tuberculosis infections and might present important targets for much needed new drugs: blocking these systems could prevent the bacteria from bursting the host cells and could thus alleviate the infection.

Thomas Marlovits illustrates the unique molecular architecture of the T7SS transport system: “In total, five T7SS systems are found in mycobacteria. Known as ESX-1 to ESX-5, these systems are likely all very similar but transport specific molecules. In our study, we could show that the mycobacterial T7SS structure sits exclusively in the inner bacterial membrane.”

In addition to the core body of T7SS, some of the proteins extend down into the bacterial cell. The team collected Small Angle X-ray Scattering (SAXS) data at the EMBL SAXS beamline on the DESY campus in Hamburg to help understand what they look like and how these parts of the secretion system might move. “We believe these arm-like proteins help to move the molecules of different shapes and sizes from the inside of the bacterial cell towards the pore of the secretion system for them to be transported out of the cell,” says first author Kate Beckham from EMBL Hamburg.

Now further biochemical and genetic experiments will be carried out to support the structural data and to provide in vivo insights into the components required for assembly of the T7 secretion system.

Original publication:
Beckham K.S.H et al. Structure of a mycobacterial type VII secretion system membrane complex. Nature Microbiology, 2017. DOI: 10.1038/nmicrobiol.2017.47.

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

About IMBA:
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.

Media Contact at IMP
Dr. Heidemarie Hurtl
IMP Communications
Research Institute of Molecular Pathology
+43 (0)1 79730 3625
hurtl@imp.ac.at

Media Contact at IMBA
Ines Méhu-Blantar
IMBA Communications
IMBA - Institute of Molecular Biotechnology
+43 (1) 790 44-3628
E.: ines.mehu-blantar@imba.oeaw.ac.at

Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>