Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TSRI scientists pinpoint Ebola's weak spots

09.08.2016

New study illuminates structure of mystery protein

Scientists at The Scripps Research Institute (TSRI) now have a high-resolution view of exactly how the experimental therapy ZMapp targets Ebola virus.


The Scripps Research team succeeded in showing how experimental therapy ZMapp targets the Ebola virus, here targeting the virus's GP protein.

Image courtesy of Andrew Ward and Jesper Pallesen

The new study is also the first to show how an antibody in the ZMapp "drug cocktail" targets a second Ebola virus protein, called sGP, whose vulnerable spots had previously been unknown.

"This sGP protein is tremendously important," said TSRI Professor Erica Ollmann Saphire, who co-led the study with TSRI Associate Professor Andrew Ward. "This is the roadmap we need to target the right molecules in infection."

"Determining the proper balance in targeting these two Ebola proteins will be key to building improved therapeutics," added Ward.

The study was published August 8, 2016 in the journal Nature Microbiology.

Zooming in on ZMapp

Scientists need detailed images of Ebola virus's molecular structure. Like enemy reconnaissance, structures can show where Ebola is vulnerable and how medical treatments can neutralize it.

TSRI scientists are harnessing an imaging technique called cryo-electron microscopy (in which a sample is pelted with electrons) to create high-resolution, 3-D images of Ebola virus and the antibodies that fight it.

"We're at the cutting edge of our ability to resolve high-resolution protein complexes," said TSRI Research Associate C. Daniel Murin, co-first author of the new study with TSRI Research Associate Jesper Pallesen.

In the new study, the researchers used cryo-electron microscopy to see exactly how Ebola virus interacts with the three antibodies in the ZMapp experimental therapy produced by Mapp Biopharmaceutical, also a study collaborator.

The researchers had imaged these interactions at a low resolution in a 2014 study, but the new study revealed substantially more details, including the exact angles the antibodies use to approach the molecule on the surface of the virus, termed its surface glycoprotein (GP), and the individual amino acid contact points at which the antibodies bind GP. This information provides new clues to researchers trying to make the antibodies even more effective.

"The three components of ZMapp, now resolved at high-resolution, can be further engineered in a structure-based manner for improved potency," said Ward.

Solving an Elusive Structure

Next, the researchers took a closer look at one of the three antibodies that make up ZMapp, called 13C6. This antibody is unique because it can also target the soluble Ebola protein sGP.

sGP's role in infection is a mystery. Ebola virus makes the protein profusely, indicating that it is important, but then sGP appears just to float in a person's blood serum. One theory is that sGP may be essential in the natural host "reservoir."

"Eighty to ninety percent of what Ebola virus makes in infection is this shed molecule," said Saphire. "It's like a smoke screen, and we need to know where it is similar to our target GP and where it is different."

To add to the mystery, Ebola makes GP and sGP using the same gene. A small difference in the way the gene is read changes how the molecules are shaped and changes their roles.

One obstacle to understanding sGP is that it is too small to be seen with cryo-electron microscopes. To solve this problem, the researchers added "bulk" by pairing sGP with antibodies, including 13C6. This allowed them to kill two birds with one stone--they could see sGP's structure while also studying how antibodies interact with it.

The new image shows the binding sites, or "epitopes," the antibody targets. "We can see hot spots on this virus that we can hit," said Pallesen.

This study is the latest research from the Viral Hemorrhagic Fever Consortium, an international partnership of research institutes led by Saphire. The researchers said collaboration with the consortium was key to this study, allowing scientists to share samples and data, including viral genetic sequences isolated from patients in the most recent Ebola outbreak.

###

In addition to Saphire, Ward, Murin and Pallesen, authors of the study, "Structures of Ebola virus GP and sGP in complex with therapeutic antibodies," [http://www.nature.com/articles/nmicrobiol2016128] were Natalia de Val, Christopher A. Cottrell, Kathryn M. Hastie, Hannah Turner and Marnie Fusco of TSRI; Kristian G. Andersen of TSRI and the Scripps Translational Science Institute; Andrew I. Flyak and James E. Crowe of Vanderbilt University and Larry Zeitlin of Mapp Biopharmaceutical.

This study was supported by the National Institutes of Health (NIH, grant R01 AI067927), the NIH's National Institute of Allergy and Infectious Diseases (grant U19AI109762 and U19AI109711) and the National Science Foundation.

Media Contact

Madeline McCurry-Schmidt
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Madeline McCurry-Schmidt | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>