Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trinity scientists make breakthrough in understanding Parkinson's disease

14.11.2014

Trinity scientists make breakthrough in understanding how parkin, a gene implicated in Parkinson's disease, controls the repair and replacement of nerve cells

  • The scientists showed that the Parkin protein functions to repair or destroy damaged nerve cells, depending on the degree to which they are damaged
  • People living with Parkinson's disease often have a mutated form of the Parkin gene, which may explain why damaged, dysfunctional nerve cells accumulate

Parkin-expressing cells (red) are undergoing programmed cell death.

Credit: Dr. Emilie Hollville and Professor Seamus Martin, Trinity College Dublin


Parkin-expressing cells (red) are undergoing programmed cell death.

Credit: Dr. Emilie Hollville and Professor Seamus Martin, Trinity College Dublin


Scientists at Trinity College Dublin have made an important breakthrough in our understanding of Parkin - a protein that regulates the repair and replacement of nerve cells within the brain. This breakthrough generates a new perspective on how nerve cells die in Parkinson's disease.

The Trinity research group, led by Smurfit Professor of Medical Genetics, Professor Seamus Martin, has just published its findings in the internationally renowned, peer-reviewed Cell Press journal, Cell Reports.

Although mutation of Parkin has been known to lead to an early onset form of Parkinson's for many years, understanding what it actually did within cells has been difficult to solve.

Now, Professor Martin and colleagues have discovered that in response to specific types of cell damage, Parkin can trigger the self-destruction of 'injured' nerve cells by switching on a controlled process of 'cellular suicide' called apoptosis.

Using cutting-edge research techniques, the Martin laboratory, funded by Science Foundation Ireland, found that damage to mitochondria (which function as 'cellular battery packs') activates the Parkin protein, which results in one of two different outcomes - either self-destruction or a repair mode. Which outcome was chosen depended on the degree of damage suffered by the cellular battery packs.

Importantly, these new findings suggest that one of the problems in Parkinson's disease may be the failure to clear away sick nerve cells with faulty cellular battery packs, to make way for healthy replacements. Instead, sickly and dysfunctional nerve cells may accumulate, which effectively prevents the recruitment of fresh replacements.

Commenting on the findings, Professor Martin stated: "This discovery is surprising and turns on its head the way we thought that Parkin functions. Until now, we have thought of Parkin as a brake on cell death within nerve cells, helping to delay their death. However, our new data suggests the contrary: Parkin may in fact help to weed out injured and sick nerve cells, which probably facilitates their replacement. This suggests that Parkinson's disease could result from the accumulation of defective neurons due to the failure of this cellular weeding process."

Professor Martin also added: "We are very grateful for the support of Science Foundation Ireland, who funded this research. This work represents an excellent example of how basic research leads to fundamental breakthroughs in our understanding of how diseases arise. Without such knowledge, it would be very difficult to develop new therapies."

The work was carried out in Trinity's School of Genetics and Microbiology. The research team was led by Professor Martin and included Trinity PhD student Richard Carroll and Research Fellow Dr Emilie Hollville. The Trinity research team is internationally recognised for its work on the regulation of cell death.

For media queries, please contact:

Thomas Deane, Press Officer for the Faculty of Engineering, Mathematics and Science, Trinity College Dublin, at deaneth@tcd.ie or Tel: +353-1-896-4685 / +353-85-131-5587

Smurfit Professor of Medical Genetics, Seamus Martin, Trinity College Dublin, at martinsj@tcd.ie

Notes to the editor:

1. Full title of the journal article is: 'Parkin Sensitizes toward Apoptosis Induced by Mitochondrial Depolarization through Promoting Degradation of Mcl-1, Cell Press journal, Cell Reports

About Trinity College Dublin

Trinity College Dublin, founded in 1592 is Ireland's oldest university and today has a vibrant community of 17,000 students. It is recognised internationally as Ireland's premier university. Cutting edge research, technology and innovation places the university at the forefront of higher education in Ireland and globally. It encompasses all major academic disciplines, and is committed to world-class teaching and research across the range of disciplines in the arts, humanities, engineering, science, social and health sciences.

Trinity is Ireland's leading university across all international rankings, and was ranked 61st globally in 2013 QS World University Ranking http://www.tcd.ie .

High-resolution images and captions are available, and can be accessed from this Dropbox folder: https://www.dropbox.com/sh/cyd6sf5eazbqsr0/AAB7uFMeI9-CbxVbJ4L7L3Cfa?dl=0

Thomas Deane | EurekAlert!

Further reports about: Genetics Parkin Trinity accumulate battery cell death damage nerve cells repair

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>