Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trigger mechanism for recovery after spinal cord injury revealed

19.12.2014

After an incomplete spinal cord injury, the body can partially recover basic motor function. So-called muscle spindles and associated sensory circuits back to the spinal cord promote the establishment of novel neuronal connections after injury.

This circuit-level mechanism behind the process of motor recovery was elucidated by Prof. Silvia Arber's research group at the Biozentrum, University of Basel and the Friedrich Miescher Institute for Biomedical Research. Their findings may contribute to designing novel strategies for treatment after spinal cord injuries and have now been published in the journal Cell.


Sensory nerve terminals (orange) of a muscle spindle.

(Fig: University of Basel, Biozentrum)

Spinal cord injuries often lead to chronically impaired motor function. However, patients with incomplete spinal cord injury can partially regain their basic motor ability under certain circumstances. It is believed that remaining uninjured spinal cord tissue provides a substrate to form new circuits bridging the injury. How this formation of new connections is triggered and promoted has remained unclear until now.

In collaboration with Prof. Grégoire Courtine's research group at the EPFL in Lausanne, the team of Prof. Silvia Arber at the Biozentrum at the University of Basel and the Friedrich Miescher Institute for Biomedical Research (FMI) has demonstrated in a mouse model why paralyzed limbs can move again after incomplete spinal cord injuries: A specific sensory feedback channel connected to sensors embedded within the muscles – so-called muscle spindles – promotes the functional recovery of the damaged neuronal circuits in the spinal cord.

Muscle spindle sensory feedback provides trigger signal for recovery

Limb movement activates sensory feedback loops from the muscle to the spinal cord. This specific feedback channel promotes the repair process of the damaged spinal network after injury. As a result, basic motor function can be restored. “The sensory feedback loops from muscle spindles are therefore a key factor in the recovery process,” says Silvia Arber. After spinal cord injury, these nerve impulses keep providing information to the central nervous system – even when the transmission of information from the brain to the spinal cord no longer functions.

“An important trigger for the recovery process is the information conveyed from the muscle to the central nervous system and not only the top-down information the brain sends towards muscles,” explains the first author Aya Takeoka. In addition, the researchers demonstrated that only basic locomotor functionality could be restored spontaneously after an injury. Fine locomotor task performance tested, however, remained permanently lost.

Treatments must start with activation of muscle spindles

The study suggests that activation of muscle spindles is essential to promote the recovery process of damaged neuronal networks after spinal cord injury. Thus, therapeutic approaches should aim to extensively use the muscles, even if passively after an injury. The more intensely muscles are used in the movement process, the more muscle spindle feedback circuits are stimulated. By applying this principle, the repair of neuronal circuits and the accompanying recovery of basic motor skills will have the best chances of succeeding.

Info box: The muscle spindle
Muscle spindles are sensors in the skeletal muscles of the body, which are passively stretched or shortened by muscle expansion and contraction. Each of these muscle spindles, localized within a muscle, is contacted by sensory nerves. Sensory information is conveyed by these neurons directly from the muscles (e.g. from the arms or legs) back to the spinal cord. These transmitted impulses allow us, for example, to determine with closed eyes in which position our arms, legs, hands, and fingers are. In other words, to know where our whole body is positioned.

Original citation
Aya Takeoka, Isabel Vollenweider, Grégoire Courtine, and Silvia Arber
Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury
Cell (2014)

Further Information
• Prof. Dr. Silvia Arber, University of Basel, Biozentrum, phone: +41 61 267 20 57, email: silvia.arber@unibas.ch
• Heike Sacher, University of Basel, Biozentrum, Communications, phone: +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch

Heike Sacher | Universität Basel

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>