Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trigger mechanism for recovery after spinal cord injury revealed

19.12.2014

After an incomplete spinal cord injury, the body can partially recover basic motor function. So-called muscle spindles and associated sensory circuits back to the spinal cord promote the establishment of novel neuronal connections after injury.

This circuit-level mechanism behind the process of motor recovery was elucidated by Prof. Silvia Arber's research group at the Biozentrum, University of Basel and the Friedrich Miescher Institute for Biomedical Research. Their findings may contribute to designing novel strategies for treatment after spinal cord injuries and have now been published in the journal Cell.


Sensory nerve terminals (orange) of a muscle spindle.

(Fig: University of Basel, Biozentrum)

Spinal cord injuries often lead to chronically impaired motor function. However, patients with incomplete spinal cord injury can partially regain their basic motor ability under certain circumstances. It is believed that remaining uninjured spinal cord tissue provides a substrate to form new circuits bridging the injury. How this formation of new connections is triggered and promoted has remained unclear until now.

In collaboration with Prof. Grégoire Courtine's research group at the EPFL in Lausanne, the team of Prof. Silvia Arber at the Biozentrum at the University of Basel and the Friedrich Miescher Institute for Biomedical Research (FMI) has demonstrated in a mouse model why paralyzed limbs can move again after incomplete spinal cord injuries: A specific sensory feedback channel connected to sensors embedded within the muscles – so-called muscle spindles – promotes the functional recovery of the damaged neuronal circuits in the spinal cord.

Muscle spindle sensory feedback provides trigger signal for recovery

Limb movement activates sensory feedback loops from the muscle to the spinal cord. This specific feedback channel promotes the repair process of the damaged spinal network after injury. As a result, basic motor function can be restored. “The sensory feedback loops from muscle spindles are therefore a key factor in the recovery process,” says Silvia Arber. After spinal cord injury, these nerve impulses keep providing information to the central nervous system – even when the transmission of information from the brain to the spinal cord no longer functions.

“An important trigger for the recovery process is the information conveyed from the muscle to the central nervous system and not only the top-down information the brain sends towards muscles,” explains the first author Aya Takeoka. In addition, the researchers demonstrated that only basic locomotor functionality could be restored spontaneously after an injury. Fine locomotor task performance tested, however, remained permanently lost.

Treatments must start with activation of muscle spindles

The study suggests that activation of muscle spindles is essential to promote the recovery process of damaged neuronal networks after spinal cord injury. Thus, therapeutic approaches should aim to extensively use the muscles, even if passively after an injury. The more intensely muscles are used in the movement process, the more muscle spindle feedback circuits are stimulated. By applying this principle, the repair of neuronal circuits and the accompanying recovery of basic motor skills will have the best chances of succeeding.

Info box: The muscle spindle
Muscle spindles are sensors in the skeletal muscles of the body, which are passively stretched or shortened by muscle expansion and contraction. Each of these muscle spindles, localized within a muscle, is contacted by sensory nerves. Sensory information is conveyed by these neurons directly from the muscles (e.g. from the arms or legs) back to the spinal cord. These transmitted impulses allow us, for example, to determine with closed eyes in which position our arms, legs, hands, and fingers are. In other words, to know where our whole body is positioned.

Original citation
Aya Takeoka, Isabel Vollenweider, Grégoire Courtine, and Silvia Arber
Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury
Cell (2014)

Further Information
• Prof. Dr. Silvia Arber, University of Basel, Biozentrum, phone: +41 61 267 20 57, email: silvia.arber@unibas.ch
• Heike Sacher, University of Basel, Biozentrum, Communications, phone: +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch

Heike Sacher | Universität Basel

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>