Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tricky invaders

04.11.2014

Chlamydia are the triggers for a whole range of serious diseases. At the same time, the bacteria are dependent for their survival on support from the cells they attack. The tricks they use here have been examined more closely by microbiologists from the University of Würzburg.

Bacteria of the Chlamydia trachomatis strain are responsible for a number of serious diseases in humans. A chlamydia infection is among the most common sexually transmitted diseases in the world. Current estimates suggest that, depending on the age group, up to ten percent of the population is infected with the pathogens worldwide.

Without treatment, these bacteria in women often cause the fallopian tubes to become blocked, which can result in ectopic pregnancies or infertility. Recent findings even indicate that chlamydia infections promote the development of ovarian cancer. Men can become infertile after infection.

A further consequence of a chlamydia infection arises mainly in tropical countries: there the bacteria attack the eyes and can lead to blindness. Around 150 million people are said to be suffering from this. Other strains can trigger pneumonia and are suspected of causing diseases such as atherosclerosis and Alzheimer’s disease.

The host looks after his guest

However, for chlamydia to be able to live and multiply, they are dependent on support from their “victim”. As the analysis of the Chlamydia trachomatis genome shows, the bacterium is entirely devoid of numerous metabolic processes and some exist only in fragments. For this reason, the bacterium needs to be supplied by its host cell with the necessary nutrients – nucleic acids, proteins, and lipids – continuously throughout its development cycle. It therefore has a strong interest in ensuring that the cell it has attacked stays intact and alive.

Professor Thomas Rudel, Chairman of the Department of Microbiology at the University of Würzburg, and his team have spent quite some time examining how chlamydia manage this. The scientists have now uncovered new details of the interaction between Chlamydia trachomatis and its host cell. They present their findings in the latest issue of Cell Reports.

Chlamydia prevent the cells from committing suicide

“When chlamydia attack a cell, this always causes considerable damage to the genetic material of this cell,” says Thomas Rudel. Normally, this would mean that the cell automatically “shuts down”, so to speak, or even initiates programmed cell death, known as apoptosis. This is how an organism prevents malfunctioning cells from multiplying in an uncontrolled manner and causing major damage. But in the case of a chlamydia infection this does not happen; it would appear that the bacterium is capable of preventing programmed cell death in the cell attacked.

“We were able to show that chlamydia deactivate the tumor suppressor protein p53 in the cells they have attacked and set in motion a process that ends up repairing the damage to the genetic material,” says Rudel. “Guardian of the genome”: the p53 protein is also known by this name. It has the ability to interrupt the cell cycle in damaged cells and, by doing so, to prevent the cell from dividing. This gives the cell more time to repair damage to the genetic material or to put itself out of action if it is beyond repair.

In a series of experiments, the Würzburg microbiologists were able to shed light on details of the relationship between the bacterium and the tumor suppressor. Their findings include the following:

• Since a chlamydia infection is always accompanied by damage to the genetic material, the bacteria prevent the tumor suppressor protein p53 from doing its job. In their experiments, the scientists did not manage even once to initiate cell death when administering high doses of a substance that is damaging to genetic material to cells attacked by chlamydia.

• If the researchers kept the concentration of p53 artificially high in infected cells, the chlamydia were no longer able to develop. They stayed at a stage in their lifecycle at which they are not infectious.

• How p53 keeps chlamydia in check is unclear. As it recently came to light that the protein influences a number of metabolic processes, including glycolysis and glucose transport, the Würzburg microbiologists also examined this aspect. After all, chlamydia are reliant on their host cell to supply them with glucose. However, a direct correlation could not be confirmed.

• On the other hand, the scientists were able to identify a mechanism elsewhere that enables the bacteria and the tumor suppressor protein to interact with one another: glucose-6-P-dehydrogenase – a key enzyme within the pentose phosphate cycle. If the researchers blocked this enzyme and, with it, the entire cycle, the growth of the chlamydia was curbed dramatically. However, if they stimulated the cycle, the bacteria continued to grow even if the concentration of p53 in the host cells was high.

“Our findings show two things very clearly. Firstly, chlamydia deactivate the tumor suppressor protein p53 so that they can actually multiply in the infected cell. The fact that they have to disable one of the main tumor suppressors to do this might explain the correlation between chlamydia infections and tumor development,” says Thomas Rudel. Secondly, the significance of the pentose phosphate cycle has been revealed – not just for repairing the genetic material, but also for optimally supplying the bacteria with vital nutrients.

Siegl et al., Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection, Cell Reports (2014), http://dx.doi.org/10.1016/j.celrep.2014.10.004

Contact

Prof. Dr. Thomas Rudel, Department of Microbiology, T +49 (0)931 31-84401, Thomas.Rudel@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>